আমাদের স্কুল

সেটিং

বহুনির্বাচনি প্রশ্নের দেখানোর অপশনঃ
শুধুমাত্র উত্তর 2 অপশন
3 অপশন 4 অপশন
বহুনির্বাচনি প্রশ্নের অপশন প্রদর্শনঃ
রো আকারে কলাম আকারে
বহুনির্বাচনি প্রশ্নের উত্তরঃ
লুকান বোল্ড করুন
দেখান দেখান ও বোল্ড করুন
বহুনির্বাচনি প্রশ্নের ব্যাখ্যাঃ
দেখান লুকান নিচে লুকান
থিম নির্বাচন করুনঃ
ফন্ট সাইজঃ
15

প্রশ্নঃ \(x-\frac{1}{x}=7\) হলে \( {x^3- \Big({1\over x}\Big)^3}\) এর মান কত?

[ বিসিএস ৩২তম ]

ক. 334
খ. 154
গ. 364
ঘ. 512
উত্তরঃ 364
ব্যাখ্যাঃ
প্রদত্ত রাশিটির মান নির্ণয়ের জন্য আমরা $a^3-b^3$ এর সূত্র ব্যবহার করব, যেখানে $a = x$ এবং $b = \frac{1}{x}$।

আমরা জানি:
$a^3-b^3 = (a-b)^3 + 3ab(a-b)$

এখানে, $x^3- \Big({1\over x}\Big)^3$ = $\Big(x-\frac{1}{x}\Big)^3 + 3(x)\Big(\frac{1}{x}\Big)\Big(x-\frac{1}{x}\Big)$

প্রশ্নমতে, $x-\frac{1}{x}=7$
সুতরাং, মানগুলো বসিয়ে পাই:
$= (7)^3 + 3(1)(7)$
$= 343 + 21$
$= 364$