আমাদের স্কুল

সেটিং

বহুনির্বাচনি প্রশ্নের দেখানোর অপশনঃ
শুধুমাত্র উত্তর 2 অপশন
3 অপশন 4 অপশন
বহুনির্বাচনি প্রশ্নের অপশন প্রদর্শনঃ
রো আকারে কলাম আকারে
বহুনির্বাচনি প্রশ্নের উত্তরঃ
লুকান বোল্ড করুন
দেখান দেখান ও বোল্ড করুন
বহুনির্বাচনি প্রশ্নের ব্যাখ্যাঃ
দেখান লুকান নিচে লুকান
থিম নির্বাচন করুনঃ
ফন্ট সাইজঃ
15

প্রশ্নঃ $$\frac{\sqrt{2}}{\sqrt{6}+2}$$ কত?

[ বিসিএস ৩২তম ]

ক. $$\sqrt{3}+\sqrt{2}$$
খ. $$3+\sqrt{2}$$
গ. $$\sqrt{3}-\sqrt{2}$$
ঘ. $$\sqrt{3}+2$$
উত্তরঃ $$\sqrt{3}-\sqrt{2}$$
ব্যাখ্যাঃ
ভগ্নাংশের হর (denominator) থেকে বর্গমূল চিহ্নটি সরানোর জন্য আমরা হর-এর অনুবন্ধী রাশি (conjugate) $\sqrt{6}-2$ দিয়ে লব (numerator) ও হর উভয়কেই গুণ করব।

$\frac{\sqrt{2}}{\sqrt{6}+2} = \frac{\sqrt{2}}{(\sqrt{6}+2)} \times \frac{(\sqrt{6}-2)}{(\sqrt{6}-2)}$

লব = $\sqrt{2}(\sqrt{6}-2) = \sqrt{12} - 2\sqrt{2} = 2\sqrt{3} - 2\sqrt{2} = 2(\sqrt{3}-\sqrt{2})$

হর = $(\sqrt{6}+2)(\sqrt{6}-2) = (\sqrt{6})^2 - 2^2 = 6 - 4 = 2$

এখন, লব ও হর-এর মান বসিয়ে পাই:
$\frac{2(\sqrt{3}-\sqrt{2})}{2} = \sqrt{3}-\sqrt{2}$