আমাদের স্কুল

সেটিং

বহুনির্বাচনি প্রশ্নের দেখানোর অপশনঃ
শুধুমাত্র উত্তর 2 অপশন
3 অপশন 4 অপশন
বহুনির্বাচনি প্রশ্নের অপশন প্রদর্শনঃ
রো আকারে কলাম আকারে
বহুনির্বাচনি প্রশ্নের উত্তরঃ
লুকান বোল্ড করুন
দেখান দেখান ও বোল্ড করুন
বহুনির্বাচনি প্রশ্নের ব্যাখ্যাঃ
দেখান লুকান নিচে লুকান
থিম নির্বাচন করুনঃ
ফন্ট সাইজঃ
15

প্রশ্নঃ যদি $$x^2+px+6=0$$ এর মূল দুটি সমান এবং $$p>0$$ তবে $$p$$ এর মান কত?

[ বিসিএস ১৭তম ]

ক. $$\sqrt{48}$$
খ. 0
গ. $$\sqrt{6}$$
ঘ. $$\sqrt{24}$$
উত্তরঃ $$\sqrt{24}$$
ব্যাখ্যাঃ যদি \( x^2 + px + 6 = 0 \) এর মূল দুটি সমান হয়, তবে সমীকরণের বিয়োজনকে \( \Delta = 0 \) হতে হবে।

বিয়োজনের সূত্র অনুযায়ী: \[ \Delta = b^2 - 4ac \] এখানে, \( a = 1 \), \( b = p \), এবং \( c = 6 \)।

তাহলে, \[ \Delta = p^2 - 4 \times 1 \times 6 \] \[ 0 = p^2 - 24 \] \[ p^2 = 24 \] \[ p = \sqrt{24} \] পরে, \( p > 0 \) হওয়ার কারণে, \( p = \sqrt{24} \) হবে।

অতএব, \( p \) এর মান হলো \( \sqrt{24} \)।