আমাদের স্কুল

সেটিং

বহুনির্বাচনি প্রশ্নের দেখানোর অপশনঃ
শুধুমাত্র উত্তর 2 অপশন
3 অপশন 4 অপশন
বহুনির্বাচনি প্রশ্নের অপশন প্রদর্শনঃ
রো আকারে কলাম আকারে
বহুনির্বাচনি প্রশ্নের উত্তরঃ
লুকান বোল্ড করুন
দেখান দেখান ও বোল্ড করুন
বহুনির্বাচনি প্রশ্নের ব্যাখ্যাঃ
দেখান লুকান নিচে লুকান
থিম নির্বাচন করুনঃ
ফন্ট সাইজঃ
15

প্রশ্নঃ $18(x + y)^3 , 24(x + y)^2$ এবং $32(x^2 − y^2)$ এর গ.সা.গু কোনটি?

[ ১৮তম শি. নিবন্ধন (স্কুল পর্যায়) ]

ক. 2(x+y)
খ. x-y
গ. x+y
ঘ. 2(x-y)
উত্তরঃ 2(x+y)
ব্যাখ্যাঃ রাশিগুলো হলো:
১. $18(x + y)^3 = 2 \times 3^2 \times (x+y)^3$
২. $24(x + y)^2 = 2^3 \times 3 \times (x+y)^2$
৩. $32(x^2 - y^2) = 2^5 \times (x-y)(x+y)$

গ.সা.গু. নির্ণয়ের জন্য, সাধারণ মৌলিক উৎপাদকগুলোর সর্বনিম্ন ঘাত নিতে হয়।

সাধারণ সংখ্যা উৎপাদক:
১৮, ২৪, ৩২ এর গ.সা.গু. হলো ২।

সাধারণ বীজগাণিতিক উৎপাদক:
$(x+y)$ রাশিটি তিনটি রাশিতেই আছে। এর সর্বনিম্ন ঘাত হলো $(x+y)$।
$(x-y)$ রাশিটি কেবল তৃতীয় রাশিতে আছে, তাই এটি সাধারণ উৎপাদক নয়।

সুতরাং, গ.সা.গু. হলো $2(x+y)$।