প্রশ্নঃ দুইটি দলের সদস্য সংখ্যার ল.সা.গু. ৯০ ও গ.সা.গু. ১৫ হলে উভয় দলের সদস্য মোট কত জন?
[ 18th ntrca (স্কুল পর্যায়) (15-03-2024) ]
ক. ৬৫
খ. ৭৫
গ. ৮৫
ঘ. ৯৫
উত্তরঃ ৭৫
ব্যাখ্যাঃ যদি ধরে নেওয়া হয়, দুইটি দলের সদস্য সংখ্যা x এবং y হয়, তাহলে:
ল.সা.গু. (x, y) = ৯০
গ.সা.গু. (x, y) = ১৫
আমরা জানি, দুটি সংখ্যার গুণফল = তাদের ল.সা.গু. $\times$ গ.সা.গু.
x y = ৯০ ১৫ = ১৩৫০
যেহেতু গ.সা.গু. ১৫, তাই সংখ্যা দুটি হবে ১৫a এবং ১৫b, যেখানে a ও b সহমৌলিক।
(১৫a) * (১৫b) = ১৩৫০
২২৫ a b = ১৩৫০
a * b = ১৩৫০ / ২২৫ = ৬
যেহেতু a ও b সহমৌলিক এবং তাদের গুণফল ৬, তাই সম্ভাব্য জোড়াগুলো হলো:
যদি (a,b) = (১,৬) হয়, তাহলে সংখ্যা দুটি হলো:
১৫ * ১ = ১৫
১৫ * ৬ = ৯০
এই দুইটি দলের মোট সদস্য সংখ্যা = ১৫ + ৯০ = ১০৫ জন।
যদি (a,b) = (২,৩) হয়, তাহলে সংখ্যা দুটি হলো:
১৫ * ২ = ৩০
১৫ * ৩ = ৪৫
এই দুইটি দলের মোট সদস্য সংখ্যা = ৩০ + ৪৫ = ৭৫ জন।
ল.সা.গু. (x, y) = ৯০
গ.সা.গু. (x, y) = ১৫
আমরা জানি, দুটি সংখ্যার গুণফল = তাদের ল.সা.গু. $\times$ গ.সা.গু.
x y = ৯০ ১৫ = ১৩৫০
যেহেতু গ.সা.গু. ১৫, তাই সংখ্যা দুটি হবে ১৫a এবং ১৫b, যেখানে a ও b সহমৌলিক।
(১৫a) * (১৫b) = ১৩৫০
২২৫ a b = ১৩৫০
a * b = ১৩৫০ / ২২৫ = ৬
যেহেতু a ও b সহমৌলিক এবং তাদের গুণফল ৬, তাই সম্ভাব্য জোড়াগুলো হলো:
- ১ ও ৬
- ২ ও ৩
যদি (a,b) = (১,৬) হয়, তাহলে সংখ্যা দুটি হলো:
১৫ * ১ = ১৫
১৫ * ৬ = ৯০
এই দুইটি দলের মোট সদস্য সংখ্যা = ১৫ + ৯০ = ১০৫ জন।
যদি (a,b) = (২,৩) হয়, তাহলে সংখ্যা দুটি হলো:
১৫ * ২ = ৩০
১৫ * ৩ = ৪৫
এই দুইটি দলের মোট সদস্য সংখ্যা = ৩০ + ৪৫ = ৭৫ জন।
Related MCQ
প্রশ্নঃ $$6a^{2}bc$$ এবং $$4a^{3}b^{2}c^{2}$$ -এর সংখ্যা সহগের গ.সা.গু. নিচের কোনটি?
[ বিসিএস ৪৪তম ]
ক. $$2a^{2}bc$$
খ. $$2a^{2}b^{2}c^{2}$$
ক. $$a^{2}bc$$
খ. $$2a^{2}bc$$
গ. $$2a^{2}b^{2}c^{2}$$
ক. $$a^{2}bc$$
খ. $$2a^{2}bc$$
গ. $$2a^{2}b^{2}c^{2}$$
ঘ. কোনটিই নয়
উত্তরঃ $$2a^{2}bc$$
ব্যাখ্যাঃ ১ম ধাপ: সংখ্যাসহগের গ.সা.গু. নির্ণয় করা
দুইটি সহগ হল:
\( 6 \) এবং \( 4 \)
\( 6 \) এবং \( 4 \)-এর গ.সা.গু. হল \( 2 \)।
২য় ধাপ: চলকের গ.সা.গু. নির্ণয় করা
৩য় ধাপ: চূড়ান্ত উত্তর
সংখ্যা ও চলকের গ.সা.গু. একসাথে লিখলে:
\[
\text{গ.সা.গু.} = 2a^2bc
\]
সঠিক উত্তর: \( 2a^2bc \) (খ)
১ম ধাপ: সংখ্যাসহগের গ.সা.গু. নির্ণয় করা
দুইটি সহগ হল:
\( 6 \) এবং \( 4 \)
\( 6 \) এবং \( 4 \)-এর গ.সা.গু. হল \( 2 \)।
২য় ধাপ: চলকের গ.সা.গু. নির্ণয় করা
- \( a^2 \) এবং \( a^3 \) → গ.সা.গু. \( a^2 \)
- \( b \) এবং \( b^2 \) → গ.সা.গু. \( b \)
- \( c \) এবং \( c^2 \) → গ.সা.গু. \( c \)
৩য় ধাপ: চূড়ান্ত উত্তর
সংখ্যা ও চলকের গ.সা.গু. একসাথে লিখলে:
\[
\text{গ.সা.গু.} = 2a^2bc
\]
সঠিক উত্তর: \( 2a^2bc \) (খ)
ক. 252
খ. 522
ক. 225
খ. 155
গ. 252
ক. 522
খ. 252
গ. 225
ঘ. 155
উত্তরঃ 252
ব্যাখ্যাঃ আমরা গরুর সংখ্যা \( x \) ধরে নিচ্ছি।
প্রশ্ন অনুযায়ী, গরুগুলো
⇒ তিন পথে ভাগ হয়, অর্থাৎ \( x \) তিন দ্বারা বিভাজ্য।
⇒ সাত ঘাটে পানি পান করে, অর্থাৎ \( x \) সাত দ্বারা বিভাজ্য।
⇒ নয়টি বৃক্ষের নিচে ঘুমায়, অর্থাৎ \( x \) নয় দ্বারা বিভাজ্য।
⇒ বারো জন গোয়ালা সমান সংখ্যক গরুর দুধ দোয়ায়, অর্থাৎ \( x \) বারো দ্বারা বিভাজ্য।
অতএব, \( x \) হতে হবে ৩, ৭, ৯, ১২ দ্বারা বিভাজ্য একটি সংখ্যা।
ধাপ ২: ল.সা.গু (LCM) নির্ণয়
আমরা ৩, ৭, ৯, ১২-এর ল.সা.গু নির্ণয় করি:
\[
LCM(3, 7, 9, 12)
\]
\[
= LCM(3, 7, 3^2, 2^2 \times 3)
\]
\[
= 2^2 \times 3^2 \times 7
\]
\[
= 4 \times 9 \times 7
\]
\[
= 252
\]
চূড়ান্ত উত্তর:
\[
\mathbf{252}
\]
অর্থাৎ গরুর সংখ্যা ২৫২।
প্রশ্ন অনুযায়ী, গরুগুলো
⇒ তিন পথে ভাগ হয়, অর্থাৎ \( x \) তিন দ্বারা বিভাজ্য।
⇒ সাত ঘাটে পানি পান করে, অর্থাৎ \( x \) সাত দ্বারা বিভাজ্য।
⇒ নয়টি বৃক্ষের নিচে ঘুমায়, অর্থাৎ \( x \) নয় দ্বারা বিভাজ্য।
⇒ বারো জন গোয়ালা সমান সংখ্যক গরুর দুধ দোয়ায়, অর্থাৎ \( x \) বারো দ্বারা বিভাজ্য।
অতএব, \( x \) হতে হবে ৩, ৭, ৯, ১২ দ্বারা বিভাজ্য একটি সংখ্যা।
ধাপ ২: ল.সা.গু (LCM) নির্ণয়
আমরা ৩, ৭, ৯, ১২-এর ল.সা.গু নির্ণয় করি:
\[
LCM(3, 7, 9, 12)
\]
\[
= LCM(3, 7, 3^2, 2^2 \times 3)
\]
\[
= 2^2 \times 3^2 \times 7
\]
\[
= 4 \times 9 \times 7
\]
\[
= 252
\]
চূড়ান্ত উত্তর:
\[
\mathbf{252}
\]
অর্থাৎ গরুর সংখ্যা ২৫২।
প্রশ্নঃ দুইটি সংখ্যার অনুপাত 7: 5 এবং তাদের ল.সা.গু 140 হলে সংখ্যা দুইটির গ.সা.গু কত?
[ বিসিএস ৩৯তম ]
ক. 4
খ. 9
ক. 4
খ. 12
গ. 6
ক. 4
খ. 12
গ. 6
ঘ. 9
উত্তরঃ 4
ব্যাখ্যাঃ দুটি সংখ্যার অনুপাত $7:5$ দেওয়া আছে।
ধরি, সংখ্যা দুটি হলো $7x$ এবং $5x$, যেখানে $x$ হলো সংখ্যা দুটির গ.সা.গু (গরিষ্ঠ সাধারণ গুণনীয়ক)।
আমরা জানি, দুটি সংখ্যার গুণফল = তাদের ল.সা.গু $\times$ তাদের গ.সা.গু।
অর্থাৎ, $(7x) \times (5x) = \text{ল.সা.গু} \times x$
কিন্তু এই পদ্ধতিটি সরাসরি ব্যবহার করার চেয়ে সহজ একটি সম্পর্ক আছে:
দুটি সংখ্যার ল.সা.গু = তাদের অনুপাতের গুণফল $\times$ গ.সা.গু।
ল.সা.গু $= (7 \times 5) \times x$
ল.সা.গু $= 35x$
প্রদত্ত ল.সা.গু হলো $140$।
সুতরাং, $35x = 140$
$x = \frac{140}{35}$
$x = 4$
যেহেতু $x$ হলো সংখ্যা দুটির গ.সা.গু,
সুতরাং, সংখ্যা দুটির গ.সা.গু হলো $4$।
ধরি, সংখ্যা দুটি হলো $7x$ এবং $5x$, যেখানে $x$ হলো সংখ্যা দুটির গ.সা.গু (গরিষ্ঠ সাধারণ গুণনীয়ক)।
আমরা জানি, দুটি সংখ্যার গুণফল = তাদের ল.সা.গু $\times$ তাদের গ.সা.গু।
অর্থাৎ, $(7x) \times (5x) = \text{ল.সা.গু} \times x$
কিন্তু এই পদ্ধতিটি সরাসরি ব্যবহার করার চেয়ে সহজ একটি সম্পর্ক আছে:
দুটি সংখ্যার ল.সা.গু = তাদের অনুপাতের গুণফল $\times$ গ.সা.গু।
ল.সা.গু $= (7 \times 5) \times x$
ল.সা.গু $= 35x$
প্রদত্ত ল.সা.গু হলো $140$।
সুতরাং, $35x = 140$
$x = \frac{140}{35}$
$x = 4$
যেহেতু $x$ হলো সংখ্যা দুটির গ.সা.গু,
সুতরাং, সংখ্যা দুটির গ.সা.গু হলো $4$।
ক. ২৬০
খ. ৪৯০
ক. ১৩০
খ. ২৬০
গ. ৪৯০
ক. ২৬০
খ. ৭৮০
গ. ১৩০
ঘ. ৪৯০
উত্তরঃ ২৬০
ব্যাখ্যাঃ সমাধানটি নিচে দেওয়া হলো:
আমরা জানি, দুটি সংখ্যার গুণফল = সংখ্যা দুটির ল. সা. গু. $\times$ সংখ্যা দুটির গ. সা. গু.
এখানে দেওয়া আছে:
দুটি সংখ্যার গুণফল = ৩৩৮০
গ. সা. গু. = ১৩
ধরি, সংখ্যা দুটির ল. সা. গু. = $L$
তাহলে, সূত্র অনুযায়ী:
$৩৩৮০ = L \times ১৩$
এখন, $L$-এর মান নির্ণয় করতে ১৩ দিয়ে ৩৩৮০-কে ভাগ করতে হবে:
$L = \frac{৩৩৮০}{১৩}$
$L = ২৬০$
সুতরাং, সংখ্যা দুটির ল. সা. গু. হলো ২৬০।
আমরা জানি, দুটি সংখ্যার গুণফল = সংখ্যা দুটির ল. সা. গু. $\times$ সংখ্যা দুটির গ. সা. গু.
এখানে দেওয়া আছে:
দুটি সংখ্যার গুণফল = ৩৩৮০
গ. সা. গু. = ১৩
ধরি, সংখ্যা দুটির ল. সা. গু. = $L$
তাহলে, সূত্র অনুযায়ী:
$৩৩৮০ = L \times ১৩$
এখন, $L$-এর মান নির্ণয় করতে ১৩ দিয়ে ৩৩৮০-কে ভাগ করতে হবে:
$L = \frac{৩৩৮০}{১৩}$
$L = ২৬০$
সুতরাং, সংখ্যা দুটির ল. সা. গু. হলো ২৬০।
প্রশ্নঃ দুইটি সংখ্যার গ.সা.গু. 11 এবং ল.সা.গু. 7700। একটি সংখ্যা 275 হলে, অপর সংখ্যাটি -
[ বিসিএস ৩৫তম ]
ক. 308
খ. 318
ক. 283
খ. 279
গ. 308
ক. 318
খ. 308
গ. 283
ঘ. 279
উত্তরঃ 308
ব্যাখ্যাঃ দেওয়া আছে:
দুইটি সংখ্যার গ.সা.গু. (GCD) = ১১
দুইটি সংখ্যার ল.সা.গু. (LCM) = ৭৭০০
একটি সংখ্যা = ২৭৫
আমরা জানি, দুইটি সংখ্যার গুণফল তাদের গ.সা.গু. এবং ল.সা.গু. এর গুণফলের সমান।
অর্থাৎ, প্রথম সংখ্যা $\times$ দ্বিতীয় সংখ্যা = গ.সা.গু. $\times$ ল.সা.গু.
ধরি, অপর সংখ্যাটি $x$।
তাহলে,
$২৭৫ \times x = ১১ \times ৭৭০০$
$x = \frac{১১ \times ৭৭০০}{২৭৫}$
এখন, কাটাকাটি করি:
$২৭৫$ কে $১১$ দিয়ে ভাগ করলে $২৫$ হয় ($২৭৫ \div ১১ = ২৫$)।
$x = \frac{১ \times ৭৭০০}{২৫}$
$x = \frac{৭৭০০}{২৫}$
এখন, ৭৭০০ কে ২৫ দিয়ে ভাগ করি:
$৭৭০০ \div ২৫ = (৭৬০০ \div ২৫) + (১০০ \div ২৫) = ৩০৪ + ৪ = ৩০৮$
অথবা,
$৭৭০০ \div ২৫ = (৭৭ \times ১০০) \div ২৫ = ৭৭ \times ৪ = ৩০৮$
সুতরাং, অপর সংখ্যাটি হলো ৩০৮।
দুইটি সংখ্যার গ.সা.গু. (GCD) = ১১
দুইটি সংখ্যার ল.সা.গু. (LCM) = ৭৭০০
একটি সংখ্যা = ২৭৫
আমরা জানি, দুইটি সংখ্যার গুণফল তাদের গ.সা.গু. এবং ল.সা.গু. এর গুণফলের সমান।
অর্থাৎ, প্রথম সংখ্যা $\times$ দ্বিতীয় সংখ্যা = গ.সা.গু. $\times$ ল.সা.গু.
ধরি, অপর সংখ্যাটি $x$।
তাহলে,
$২৭৫ \times x = ১১ \times ৭৭০০$
$x = \frac{১১ \times ৭৭০০}{২৭৫}$
এখন, কাটাকাটি করি:
$২৭৫$ কে $১১$ দিয়ে ভাগ করলে $২৫$ হয় ($২৭৫ \div ১১ = ২৫$)।
$x = \frac{১ \times ৭৭০০}{২৫}$
$x = \frac{৭৭০০}{২৫}$
এখন, ৭৭০০ কে ২৫ দিয়ে ভাগ করি:
$৭৭০০ \div ২৫ = (৭৬০০ \div ২৫) + (১০০ \div ২৫) = ৩০৪ + ৪ = ৩০৮$
অথবা,
$৭৭০০ \div ২৫ = (৭৭ \times ১০০) \div ২৫ = ৭৭ \times ৪ = ৩০৮$
সুতরাং, অপর সংখ্যাটি হলো ৩০৮।
প্রশ্নঃ $$x^2-11x+30$$ এবং $$x^3-4x^2-2x-15$$ এর গ.সা.গু. কত?
[ বিসিএস ২৫তম ]
ক. $$x^3+x+3$$
খ. $$x-5$$
ক. $$x-5$$
খ. $$x-6$$
গ. $$x^3-x+3$$
ক. $$x-5$$
খ. $$x-6$$
গ. $$x^3+x+3$$
ঘ. $$x^3-x+3$$
উত্তরঃ $$x-5$$
ব্যাখ্যাঃ প্রথমে আমরা উভয় বহুপদীর (polynomials) গুণনীয়ক বিচ্ছেদ (factorization) করতে পারি। প্রথম বহুপদী: \[ x^2 - 11x + 30 \] এর গুণনীয়ক বিচ্ছেদ করে পাই: \[ (x - 5)(x - 6) \] দ্বিতীয় বহুপদী: \[ x^3 - 4x^2 - 2x - 15 \] এখন, উপযুক্ত পদ্ধতি ব্যবহার করে গুণনীয়ক বিচ্ছেদ করতে পারি: \[ x^3 - 4x^2 - 2x - 15 = (x - 5)(x^2 + x - 3) \] আমরা দেখতে পাচ্ছি যে উভয় বহুপদীতে সাধারণ গুণনীয়ক হল \( (x - 5) \)। তাহলে, \( x^2 - 11x + 30 \) এবং \( x^3 - 4x^2 - 2x - 15 \) এর গ.সা.গু. হল \( (x - 5) \)।
প্রশ্নঃ দুটি সংখ্যার গ.সা.গু বিয়োগফল এবং ল.সা.গু. যথাক্রমে ১২, ৬০ এবং ২৪৪৮ । সংখ্যা দুটি কত?
[ বিসিএস ১৭তম ]
ক. ১৪৪, ২০৪
খ. ১৪৪, ২০৮
ক. ১৪৪, ২০৪
খ. ১৪৪, ২০৮
গ. ১০৮, ১৪৪
ক. ১০৮, ১৪৪
খ. ১১২, ১৪৮
গ. ১৪৪, ২০৮
ঘ. ১৪৪, ২০৪
উত্তরঃ ১৪৪, ২০৪
ব্যাখ্যাঃ ধরুন, সংখ্যা দুটি হলো \( a \) এবং \( b \)।
গ.সা.গু এবং ল.সা.গু এর সূত্র অনুসারে: \[ a \times b = \text{গ.সা.গু} \times \text{ল.সা.গু} \] প্রশ্নে দেয়া তথ্য অনুসারে: \[ a \times b = ১২ \times ২৪৪৮ \] \[ a \times b = ২৯৩৭৬ \] এখন, \( a \) এবং \( b \) এর একটি সম্পর্ক বের করতে হবে। \( a \) এবং \( b \) এর পার্থক্য হলো ৬০: \[ a - b = ৬০ \] ধরুন, \( a = b + ৬০ \) তাহলে, \[ (b + ৬০) \times b = ২৯৩৭৬ \] \[ b^2 + ৬০b = ২৯৩৭৬ \] \[ b^2 + ৬০b - ২৯৩৭৬ = ০ \] এটি একটি দ্বিঘাত সমীকরণ। এখন, আমরা বর্গমূল সূত্র ব্যবহার করে \( b \) এর মান বের করি: \[ b = \frac{-৬০ \pm \sqrt{৬০^২ + ৪ \times ২৯৩৭৬}}{২} \] \[ b = \frac{-৬০ \pm \sqrt{৩৬০০ + ১১৭৫০৪}}{২} \] \[ b = \frac{-৬০ \pm \sqrt{১২১১০৪}}{২} \] \[ b = \frac{-৬০ \pm ৩৪৮}{২} \] দুটি মান পাওয়া যায়: \[ b = \frac{২৮৮}{২} = ১৪৪ \] \[ b = \frac{-৪০৮}{২} = -২০৪ \] যেহেতু \( b \) একটি ধনাত্মক সংখ্যা, তাহলে \( b = ১৪৪ \)। এখন \( a \) এর মান বের করি: \[ a = ১৪৪ + ৬০ = ২০৪ \] অতএব, দুটি সংখ্যা হলো ১৪৪ এবং ২০৪।
গ.সা.গু এবং ল.সা.গু এর সূত্র অনুসারে: \[ a \times b = \text{গ.সা.গু} \times \text{ল.সা.গু} \] প্রশ্নে দেয়া তথ্য অনুসারে: \[ a \times b = ১২ \times ২৪৪৮ \] \[ a \times b = ২৯৩৭৬ \] এখন, \( a \) এবং \( b \) এর একটি সম্পর্ক বের করতে হবে। \( a \) এবং \( b \) এর পার্থক্য হলো ৬০: \[ a - b = ৬০ \] ধরুন, \( a = b + ৬০ \) তাহলে, \[ (b + ৬০) \times b = ২৯৩৭৬ \] \[ b^2 + ৬০b = ২৯৩৭৬ \] \[ b^2 + ৬০b - ২৯৩৭৬ = ০ \] এটি একটি দ্বিঘাত সমীকরণ। এখন, আমরা বর্গমূল সূত্র ব্যবহার করে \( b \) এর মান বের করি: \[ b = \frac{-৬০ \pm \sqrt{৬০^২ + ৪ \times ২৯৩৭৬}}{২} \] \[ b = \frac{-৬০ \pm \sqrt{৩৬০০ + ১১৭৫০৪}}{২} \] \[ b = \frac{-৬০ \pm \sqrt{১২১১০৪}}{২} \] \[ b = \frac{-৬০ \pm ৩৪৮}{২} \] দুটি মান পাওয়া যায়: \[ b = \frac{২৮৮}{২} = ১৪৪ \] \[ b = \frac{-৪০৮}{২} = -২০৪ \] যেহেতু \( b \) একটি ধনাত্মক সংখ্যা, তাহলে \( b = ১৪৪ \)। এখন \( a \) এর মান বের করি: \[ a = ১৪৪ + ৬০ = ২০৪ \] অতএব, দুটি সংখ্যা হলো ১৪৪ এবং ২০৪।
ক. ১৬
খ. ১২
ক. ২৪
খ. ১৬
গ. ৩২
ক. ১৬
খ. ২৪
গ. ৩২
ঘ. ১২
উত্তরঃ ১৬
ব্যাখ্যাঃ ল.সা.গু (লঘিষ্ঠ সাধারণ গুণনীয়ক) এবং গ.সা.গু (গরিষ্ঠ সাধারণ গুণনীয়ক) এর মধ্যে একটি গুরুত্বপূর্ণ সম্পর্ক আছে: \[ \text{ল.সা.গু} \times \text{গ.সা.গু} = \text{সংখ্যা দুইটির গুণফল} \] আমাদের দেওয়া আছে সংখ্যার গুণফল ১৫৩৬ এবং ল.সা.গু ৯৬। আমরা গ.সা.গু নির্ণয় করতে পারি: \[ \text{গ.সা.গু} = \frac{\text{সংখ্যা দুইটির গুণফল}}{\text{ল.সা.গু}} \] \[ \text{গ.সা.গু} = \frac{১৫৩৬}{৯৬} \] \[ \text{গ.সা.গু} = ১৬ \] অতএব, গ.সা.গু এর মান হলো ১৬।
প্রশ্নঃ \((4x^2-16)\) এবং \(6x^2+24x+24\) এর গসাগু–
[ বিসিএস ৩১তম ]
ক. \(2(x+2)\)
খ. \(x+2\)
ক. \(2(x+2)\)
খ. \(x+5\)
গ. \(x+2\)
ক. \(x+2\)
খ. \(x+4\)
গ. \(x+5\)
ঘ. \(2(x+2)\)
উত্তরঃ \(2(x+2)\)
ব্যাখ্যাঃ \[ 4x^2 - 16 = 4(x^2 - 4) = 2 \cdot 2 (x + 2)(x - 2) \] \[ 6x^2 + 24x + 24 = 6(x^2 + 4x + 4) = 2 \cdot 3 (x + 2)^2 \] ∴ গ.সা.গু = \(2(x + 2)\)
প্রশ্নঃ একটি স্কুলে ছাত্রদের ড্রিল করবার সময় ৮, ১০ এবং ১২ সারিতে সাজানো যায়। আবার বর্গাকারেও সাজানো যায়। ঐ স্কুলে কমপক্ষে কতজন ছাত্র আছে?
[ প্রা.বি.স.শি. 20-05-2022 ]
ক. ৩৬০০
খ. ৩০০০
ক. ১২০০
খ. ৩০০০
গ. ৩৬০০
ক. ২৪০০
খ. ১২০০
গ. ৩০০০
ঘ. ৩৬০০
উত্তরঃ ৩৬০০
ব্যাখ্যাঃ সমস্যাটি সমাধান করার জন্য আমাদের এমন একটি সংখ্যা খুঁজে বের করতে হবে যা ৮, ১০ এবং ১২ দ্বারা বিভাজ্য এবং এটি একটি পূর্ণবর্গ সংখ্যা।
ধাপ ১: ৮, ১০ এবং ১২ এর লঘিষ্ঠ সাধারণ গুণিতক (LCM) নির্ণয়
প্রথমে ৮, ১০ এবং ১২ এর লঘিষ্ঠ সাধারণ গুণিতক (LCM) নির্ণয় করি।
- ৮ এর মৌলিক উৎপাদক: \( 2^3 \)
- ১০ এর মৌলিক উৎপাদক: \( 2 \times 5 \)
- ১২ এর মৌলিক উৎপাদক: \( 2^2 \times 3 \)
LCM হবে প্রতিটি মৌলিক উৎপাদকের সর্বোচ্চ ঘাতের গুণফল: \[ \text{LCM} = 2^3 \times 3 \times 5 = 8 \times 3 \times 5 = 120 \] ধাপ ২: LCM কে পূর্ণবর্গ সংখ্যায় পরিণত করা
১২০ একটি পূর্ণবর্গ সংখ্যা নয়, কারণ এর মৌলিক উৎপাদকগুলির ঘাত সমান নয়। পূর্ণবর্গ সংখ্যা হতে হলে প্রতিটি মৌলিক উৎপাদকের ঘাত জোড় সংখ্যা হতে হবে।
১২০ এর মৌলিক উৎপাদক: \[ 120 = 2^3 \times 3^1 \times 5^1 \] প্রতিটি মৌলিক উৎপাদকের ঘাত জোড় সংখ্যা করতে হলে:
- ২ এর ঘাত ৩ থেকে ৪ করতে হবে (পরবর্তী জোড় সংখ্যা)
- ৩ এর ঘাত ১ থেকে ২ করতে হবে
- ৫ এর ঘাত ১ থেকে ২ করতে হবে
সুতরাং, পূর্ণবর্গ সংখ্যা হবে: \[ 2^4 \times 3^2 \times 5^2 = 16 \times 9 \times 25 = 3600 \] সুতরাং, স্কুলে কমপক্ষে ৩৬০০ জন ছাত্র আছে। \[ \boxed{3600} \]
ধাপ ১: ৮, ১০ এবং ১২ এর লঘিষ্ঠ সাধারণ গুণিতক (LCM) নির্ণয়
প্রথমে ৮, ১০ এবং ১২ এর লঘিষ্ঠ সাধারণ গুণিতক (LCM) নির্ণয় করি।
- ৮ এর মৌলিক উৎপাদক: \( 2^3 \)
- ১০ এর মৌলিক উৎপাদক: \( 2 \times 5 \)
- ১২ এর মৌলিক উৎপাদক: \( 2^2 \times 3 \)
LCM হবে প্রতিটি মৌলিক উৎপাদকের সর্বোচ্চ ঘাতের গুণফল: \[ \text{LCM} = 2^3 \times 3 \times 5 = 8 \times 3 \times 5 = 120 \] ধাপ ২: LCM কে পূর্ণবর্গ সংখ্যায় পরিণত করা
১২০ একটি পূর্ণবর্গ সংখ্যা নয়, কারণ এর মৌলিক উৎপাদকগুলির ঘাত সমান নয়। পূর্ণবর্গ সংখ্যা হতে হলে প্রতিটি মৌলিক উৎপাদকের ঘাত জোড় সংখ্যা হতে হবে।
১২০ এর মৌলিক উৎপাদক: \[ 120 = 2^3 \times 3^1 \times 5^1 \] প্রতিটি মৌলিক উৎপাদকের ঘাত জোড় সংখ্যা করতে হলে:
- ২ এর ঘাত ৩ থেকে ৪ করতে হবে (পরবর্তী জোড় সংখ্যা)
- ৩ এর ঘাত ১ থেকে ২ করতে হবে
- ৫ এর ঘাত ১ থেকে ২ করতে হবে
সুতরাং, পূর্ণবর্গ সংখ্যা হবে: \[ 2^4 \times 3^2 \times 5^2 = 16 \times 9 \times 25 = 3600 \] সুতরাং, স্কুলে কমপক্ষে ৩৬০০ জন ছাত্র আছে। \[ \boxed{3600} \]
প্রশ্নঃ সর্রমোট কত সংখ্যক গাছ হলে একটি বাগানে ৭, ১৪, ২১, ৩৫, ৪২ সারিতে গাছ লাগালে একটিও কম বা বেশী হবে না?
[ প্রা.বি.স.শি. 26-06-2019 ]
ক. ২১০
খ. ২৪০
ক. ২১০
খ. ২৪০
গ. ২৩০
ক. ২৩০
খ. ২৪০
গ. ২১০
ঘ. ২২০
উত্তরঃ ২১০
ব্যাখ্যাঃ
৭, ১৪, ২১, ৩৫, ৪২ এর লসাগু ২১০। তাই সর্বনিম্ন ২১০ টি গাছ লাগাগে কম বেশি হবে না।
প্রশ্নঃ দুটি সংখ্যার গ.সা.গু ও ল.সা.গু যথাক্রমে ২ ও ৩৬০ । একটি সংখ্যা ১০ হলে অপর সংখ্যাটি কত?
[ প্রা.বি.স.শি. 26-06-2019 ]
ক. ৬০
খ. ৭২
ক. ৭২
খ. ৪৮
গ. ৬০
ক. ৭২
খ. ৪৮
গ. ২৪
ঘ. ৬০
উত্তরঃ ৭২
ব্যাখ্যাঃ আমরা জানি, দুটি সংখ্যার গুণফল তাদের গ.সা.গু এবং ল.সা.গু এর গুণফল সমান।
অর্থাৎ, \[ সংখ্যা ১ \times সংখ্যা ২ = \text{গ.সা.গু} \times \text{ল.সা.গু} \] প্রদত্ত তথ্য অনুযায়ী, \[ 10 \times x = 2 \times 360 \] \[ 10x = 720 \] \[ x = \frac{720}{10} = 72 \] সুতরাং, অপর সংখ্যাটি হবে ৭২।
অর্থাৎ, \[ সংখ্যা ১ \times সংখ্যা ২ = \text{গ.সা.গু} \times \text{ল.সা.গু} \] প্রদত্ত তথ্য অনুযায়ী, \[ 10 \times x = 2 \times 360 \] \[ 10x = 720 \] \[ x = \frac{720}{10} = 72 \] সুতরাং, অপর সংখ্যাটি হবে ৭২।
প্রশ্নঃ দুটি সংখ্যার অনুপাত ৫ : ৬ এবং তাদের গ.সা.গু ৪ হলে সংখ্যা দুটির ল.সা.গু কত?
[ 18th ntrca (স্কুল সমপর্যায়-২) (15-03-2024) ]
ক. ৯০
খ. ১২০
ক. ৯০
খ. ১২০
গ. ১৩০
ক. ৯০
খ. ১১০
গ. ১২০
ঘ. ১৩০
উত্তরঃ ১২০
ব্যাখ্যাঃ ধরি, সংখ্যা দুটি হলো $5x$ এবং $6x$।
যেহেতু সংখ্যা দুটির গ.সা.গু ৪, তাই $x = 4$।
তাহলে সংখ্যা দুটি হলো:
প্রথম সংখ্যা = $5 \times 4 = 20$
দ্বিতীয় সংখ্যা = $6 \times 4 = 24$
এখন, সংখ্যা দুটির ল.সা.গু নির্ণয় করতে হবে।
২০ এবং ২৪ এর ল.সা.গু:
২০ = $2 \times 2 \times 5$
২৪ = $2 \times 2 \times 2 \times 3$
ল.সা.গু = $2 \times 2 \times 2 \times 3 \times 5 = 120$
বিকল্প পদ্ধতি:
দুটি সংখ্যার অনুপাত এবং তাদের গ.সা.গু দেওয়া থাকলে, ল.সা.গু নির্ণয়ের সূত্র হলো:
ল.সা.গু = অনুপাতের সংখ্যাগুলোর গুণফল $\times$ গ.সা.গু
ল.সা.গু = $(5 \times 6) \times 4$
ল.সা.গু = $30 \times 4$
ল.সা.গু = $120$
সুতরাং, সংখ্যা দুটির ল.সা.গু হলো ১২০।
যেহেতু সংখ্যা দুটির গ.সা.গু ৪, তাই $x = 4$।
তাহলে সংখ্যা দুটি হলো:
প্রথম সংখ্যা = $5 \times 4 = 20$
দ্বিতীয় সংখ্যা = $6 \times 4 = 24$
এখন, সংখ্যা দুটির ল.সা.গু নির্ণয় করতে হবে।
২০ এবং ২৪ এর ল.সা.গু:
২০ = $2 \times 2 \times 5$
২৪ = $2 \times 2 \times 2 \times 3$
ল.সা.গু = $2 \times 2 \times 2 \times 3 \times 5 = 120$
বিকল্প পদ্ধতি:
দুটি সংখ্যার অনুপাত এবং তাদের গ.সা.গু দেওয়া থাকলে, ল.সা.গু নির্ণয়ের সূত্র হলো:
ল.সা.গু = অনুপাতের সংখ্যাগুলোর গুণফল $\times$ গ.সা.গু
ল.সা.গু = $(5 \times 6) \times 4$
ল.সা.গু = $30 \times 4$
ল.সা.গু = $120$
সুতরাং, সংখ্যা দুটির ল.সা.গু হলো ১২০।
প্রশ্নঃ $4(a + b), 10(a – b)$ এবং $12(a^2 – b^2)$ এর গ.সা.গু কত?
[ 18th ntrca (স্কুল সমপর্যায়-২) (15-03-2024) ]
ক. \(12 ( a^2 − b^2 )\)
খ. 2
ক. a - b
খ. a + b
গ. 2
ক. a - b
খ. a + b
গ. \(12 ( a^2 − b^2 )\)
ঘ. 2
উত্তরঃ 2
ব্যাখ্যাঃ চলুন, রাশিগুলোর গ.সা.গু (গরিষ্ঠ সাধারণ গুণনীয়ক) নির্ণয় করি।
প্রদত্ত রাশিগুলো হলো:
প্রথমে সাংখ্যিক সহগগুলোর গ.সা.গু বের করি:
4, 10, 12 এর গ.সা.গু:
4 = 2 $\times$ 2
10 = 2 $\times$ 5
12 = 2 $\times$ 2 $\times$ 3
সাংখ্যিক সহগগুলোর গ.সা.গু হল 2।
এখন বীজগাণিতিক অংশগুলো দেখি:
$a+b$
$a-b$
$a^2-b^2 = (a+b)(a-b)$
এই তিনটি বীজগাণিতিক রাশির মধ্যে কোনো সাধারণ উৎপাদক নেই (অর্থাৎ, $a+b$ এবং $a-b$ এর মধ্যে কোনো সাধারণ উৎপাদক নেই)।
অতএব, সম্পূর্ণ রাশিগুলোর গ.সা.গু হলো সাংখ্যিক সহগগুলোর গ.সা.গু এবং বীজগাণিতিক অংশের সাধারণ উৎপাদকগুলোর গুণফল।
এখানে, বীজগাণিতিক অংশের সাধারণ উৎপাদক শুধুমাত্র 1।
সুতরাং, $4(a + b)$, $10(a – b)$ এবং $12(a^2 – b^2)$ এর গ.সা.গু হল 2।
প্রদত্ত রাশিগুলো হলো:
- $4(a + b)$
- $10(a – b)$
- $12(a^2 – b^2)$
প্রথমে সাংখ্যিক সহগগুলোর গ.সা.গু বের করি:
4, 10, 12 এর গ.সা.গু:
4 = 2 $\times$ 2
10 = 2 $\times$ 5
12 = 2 $\times$ 2 $\times$ 3
সাংখ্যিক সহগগুলোর গ.সা.গু হল 2।
এখন বীজগাণিতিক অংশগুলো দেখি:
$a+b$
$a-b$
$a^2-b^2 = (a+b)(a-b)$
এই তিনটি বীজগাণিতিক রাশির মধ্যে কোনো সাধারণ উৎপাদক নেই (অর্থাৎ, $a+b$ এবং $a-b$ এর মধ্যে কোনো সাধারণ উৎপাদক নেই)।
অতএব, সম্পূর্ণ রাশিগুলোর গ.সা.গু হলো সাংখ্যিক সহগগুলোর গ.সা.গু এবং বীজগাণিতিক অংশের সাধারণ উৎপাদকগুলোর গুণফল।
এখানে, বীজগাণিতিক অংশের সাধারণ উৎপাদক শুধুমাত্র 1।
সুতরাং, $4(a + b)$, $10(a – b)$ এবং $12(a^2 – b^2)$ এর গ.সা.গু হল 2।