প্রশ্নঃ নিচের কোন সংখ্যাটি মৌলিক?
[ বিসিএস ১০তম ]
যে সংখ্যাকে ১ এবং ঐ সংখ্যা ব্যতীত অন্য কোনো সংখ্যা দ্বারা নিঃশেষে ভাগ করা যায় না সেই সংখ্যাকে মৌলিক সংখ্যা বলে। উপরিউক্ত ৪টি সংখ্যার মধ্যে ৪৭ সংখ্যাটিরই কেবলমাত্র ২টি উৎপাদক আছে বলে এটি মৌলিক সংখ্যা।
Related MCQ
প্রশ্নঃ ১ হতে বড় ১০০০ এর মধ্যে কতগুলো সংখ্যা আছে যারা ১৬ দ্বারা বিভাজ্য নয় কিন্তু ৩০ দ্বারা বিভাজ্য?
[ বিসিএস ৪৬তম ]
১ হতে বড় এবং ১০০০ এর মধ্যে ৩০ দ্বারা বিভাজ্য সংখ্যা: \[ \frac{990}{30} = 33 \] (৩০, ৬০, ৯০, ..., ৯৯০)
২. সংখ্যা যা ৩০ এবং ১৬ উভয় দ্বারা বিভাজ্য
কোন সংখ্যা যদি ৩০ এবং ১৬ উভয় দ্বারা বিভাজ্য হয়, তবে সেটি LCM(30, 16) = 240 দ্বারা বিভাজ্য হবে। \[ \frac{960}{240} = 4 \] (২৪০, ৪৮০, ৭২০, ৯৬০)
৩. চূড়ান্ত সংখ্যা
৩৩টি সংখ্যা আছে যা ৩০ দ্বারা বিভাজ্য, এর মধ্যে ৪টি ১৬ দ্বারা বিভাজ্য।
অতএব, চূড়ান্ত সংখ্যা: \[ 33 - 4 = 29 \] উত্তর: \[ \boxed{29} \]
এদের গড় দেওয়া আছে \( 15 \), অর্থাৎ \[ \frac{(x-2) + (x-1) + x + (x+1) + (x+2)}{5} = 15 \] \[ \frac{5x}{5} = 15 \] \[ x = 15 \] এখন, সবচেয়ে বড় পূর্ণ সংখ্যা হবে \( x+2 \), অর্থাৎ \[ 15+2 = 17 \] তাই, সবচেয়ে বড় পূর্ণ সংখ্যা \( 17 \)।
প্রশ্নঃ $$i^{-49}$$ এর মান কত?
[ বিসিএস ৪৪তম ]
এখন, $-49$ কে $4$ দিয়ে ভাগ করলে আমরা পাই:
$$-49 = 4 \times (-13) + 3$$
সুতরাং,
$$i^{-49} = i^{4 \times (-13) + 3} = (i^4)^{-13} \times i^3$$
যেহেতু $i^4 = 1$, তাই
$$i^{-49} = (1)^{-13} \times i^3 = 1 \times i^3 = i^3$$
আমরা জানি $i^3 = -i$.
অতএব,
$$i^{-49} = -i$$
সুতরাং, $$i^{-49}$$ এর মান $-i$.
$\\~\\$
উত্তর: $-i$
ধাপ ১: পদের পারস্পরিক পরিবর্তন
আমরা উভয় পক্ষে প্রতিপাদক রাশির (Reciprocal) ব্যবহার করতে পারি, তবে চিহ্ন পরিবর্তনের কথা মনে রাখতে হবে।
যেহেতু \( 3x - 5 \) কোনো বাস্তব সংখ্যা হতে পারে, তাই আমাদের প্রকৃত ক্ষেত্রে \(3x - 5\) এর চিহ্ন বুঝতে হবে।
(ক) যখন \( 3x - 5 > 0 \), অর্থাৎ \( x > \frac{5}{3} \)
\[
(3x - 5) > 3
\]
\[
3x > 8
\]
\[
x > \frac{8}{3}
\]
(খ) যখন \( 3x - 5 < 0 \), অর্থাৎ \( x < \frac{5}{3} \)
এক্ষেত্রে অসমতার দিক বদলে যাবে, তাই
\[
(3x - 5) < 3
\]
\[
3x < 8
\]
\[
x < \frac{8}{3}
\]
ধাপ ২: সংযুক্ত সমাধান সেট
আমরা দেখতে পাচ্ছি, যখন \( x > \frac{5}{3} \), তখন \( x > \frac{8}{3} \) শর্ত প্রযোজ্য।
আর যখন \( x < \frac{5}{3} \), তখন \( x < \frac{8}{3} \) শর্ত প্রযোজ্য।
অতএব, চূড়ান্ত সমাধান সেট:
\[
x < \frac{5}{3} ~~\text{or}~~ x > \frac{8}{3}
\]
চূড়ান্ত উত্তর:
\[
(-\infty, \frac{5}{3}) \cup (\frac{8}{3}, \infty)
\]
প্রশ্নঃ ১০০ থেকে ২০০ এর মধ্যে ৩ দ্বারা বিভাজ্য সংখ্যা কয়টি?
[ বিসিএস ৪১তম ]
১০০ কে ৩ দিয়ে ভাগ করলে ভাগফল হয় ৩৩ এবং ভাগশেষ থাকে ১। সুতরাং, ১০০ এর পরে প্রথম ৩ দ্বারা বিভাজ্য সংখ্যাটি হলো ১০০ + (৩ - ১) = ১০২।
২০০ কে ৩ দিয়ে ভাগ করলে ভাগফল হয় ৬৬ এবং ভাগশেষ থাকে ২। সুতরাং, ২০০ এর আগে শেষ ৩ দ্বারা বিভাজ্য সংখ্যাটি হলো ২০০ - ২ = ১৯৮।
এখন, আমরা একটি সমান্তর ধারা পেলাম যেখানে প্রথম পদ (a) = ১০২, শেষ পদ (l) = ১৯৮ এবং সাধারণ অন্তর (d) = ৩।
ধরি, এই ধারায় মোট n সংখ্যক পদ আছে। তাহলে, সমান্তর ধারার শেষ পদের সূত্র অনুযায়ী:
$$l = a + (n - 1)d$$
এখানে,
১৯৮ = ১০২ + (n - 1)৩
১৯৮ - ১০২ = (n - 1)৩
৯৬ = (n - 1)৩
$\frac{৯৬}{৩}$ = n - 1
৩২ = n - 1
n = ৩২ + ১
n = ৩৩
সুতরাং, ১০০ থেকে ২০০ এর মধ্যে ৩ দ্বারা বিভাজ্য মোট ৩৩ টি সংখ্যা আছে।
প্রশ্নঃ নিচের কোনটি অমূলদ সংখ্যা?
[ বিসিএস ৪০তম ]
এখন আমরা প্রতিটি বিকল্প পরীক্ষা করব:
কঃ 0.4
$0.4 = \frac{4}{10} = \frac{2}{5}$
যেহেতু এটিকে$\frac{p}{q}$ আকারে প্রকাশ করা যায়, তাই এটি মূলদ সংখ্যা।
খঃ $\sqrt{9}$
$\sqrt{9} = 3 = \frac{3}{1}$যেহেতু এটিকে$\frac{p}{q}$ আকারে প্রকাশ করা যায়, তাই এটি মূলদ সংখ্যা।
গঃ 5.639
$5.639 = \frac{5639}{1000}$যেহেতু এটিকে$\frac{p}{q}$ আকারে প্রকাশ করা যায়, তাই এটি মূলদ সংখ্যা।
ঘঃ $\sqrt{\frac{27}{48}}$
প্রথমে ভগ্নাংশটিকে সরল করা যাক:$\frac{27}{48} = \frac{9 \times 3}{16 \times 3} = \frac{9}{16}$
সুতরাং,$\sqrt{\frac{27}{48}} = \sqrt{\frac{9}{16}} = \frac{\sqrt{9}}{\sqrt{16}} = \frac{3}{4}$যেহেতু এটিকে$\frac{p}{q}$ আকারে প্রকাশ করা যায়, তাই এটি মূলদ সংখ্যা।
প্রশ্নঃ নিচের কোনটি মৌলিক সংখ্যা?
[ বিসিএস ৩৯তম ]
* কঃ ৪৭
$৪৭$ কে $1$ এবং $৪৭$ ছাড়া অন্য কোনো পূর্ণসংখ্যা দ্বারা ভাগ করা যায় না।
(যেমন: $২, ৩, ৫, ৭$ ইত্যাদি দ্বারা বিভাজ্য নয়)।
সুতরাং, $৪৭$ একটি মৌলিক সংখ্যা।
* খঃ ৮৭
$৮৭$ একটি মৌলিক সংখ্যা নয়, কারণ এটি $৩$ দ্বারা বিভাজ্য ($৮৭ = ৩ \times ২৯$)।
* গঃ ৯১
$৯১$ একটি মৌলিক সংখ্যা নয়, কারণ এটি $৭$ দ্বারা বিভাজ্য ($৯১ = ৭ \times ১৩$)।
* ঘঃ ১৪৩
$১৪৩$ একটি মৌলিক সংখ্যা নয়, কারণ এটি $১১$ দ্বারা বিভাজ্য ($১৪৩ = ১১ \times ১৩$)।
সুতরাং, কঃ ৪৭ হলো মৌলিক সংখ্যা।
প্রশ্নঃ নিচের কোনটি মৌলিক সংখ্যা নয়?
[ বিসিএস ৩৮তম ]
আসুন প্রতিটি বিকল্প পরীক্ষা করি:
* কঃ ২৬৩
২৬৩ একটি মৌলিক সংখ্যা। এর উৎপাদকগুলো হলো ১ এবং ২৬৩।
* খঃ ২৩৩
২৩৩ একটি মৌলিক সংখ্যা। এর উৎপাদকগুলো হলো ১ এবং ২৩৩।
* গঃ ২৫৩
২৫৩ মৌলিক সংখ্যা নয়। কারণ, ২৫৩ কে $11$ দ্বারা ভাগ করা যায়:
$253 \div 11 = 23$
সুতরাং, ২৫৩ এর উৎপাদকগুলো হলো $1, 11, 23, 253$। যেহেতু এটির ১ এবং ২৫৩ ছাড়া আরও উৎপাদক (১১ এবং ২৩) আছে, তাই এটি মৌলিক সংখ্যা নয়, বরং একটি যৌগিক সংখ্যা।
* ঘঃ ২৪১
২৪১ একটি মৌলিক সংখ্যা। এর উৎপাদকগুলো হলো ১ এবং ২৪১।
সুতরাং, যে সংখ্যাটি মৌলিক নয়, সেটি হলো গঃ ২৫৩।
ধরি, তিনটি ক্রমিক সংখ্যা হলো $ক-১$, $ক$ এবং $ক+১$।
সংখ্যা তিনটির যোগফল = $(ক-১) + ক + (ক+১) = ৩ক$
সংখ্যা তিনটির গুণফল = $(ক-১) \times ক \times (ক+১) = ক(ক^২-১)$
প্রশ্নানুসারে,
সংখ্যা তিনটির গুণফল = ৫ $\times$ সংখ্যা তিনটির যোগফল
$ক(ক^২-১) = ৫ \times ৩ক$
$ক(ক^২-১) = ১৫ক$
উভয় পক্ষ থেকে $ক$ বাদ দিয়ে পাই (যেহেতু $ক \ne ০$):
$ক^২-১ = ১৫$
$ক^২ = ১৫+১$
$ক^২ = ১৬$
$ক = \sqrt{১৬}$
$ক = ৪$
যেহেতু সংখ্যা তিনটি ক্রমিক, তাই তাদের গড় হবে মাঝের সংখ্যাটি, অর্থাৎ $ক$।
সুতরাং, সংখ্যা তিনটির গড় হলো ৪।
প্রশ্নঃ x এবং y উভয়ই বিজোড় সংখ্যা হলে কোনটি জোড় সংখ্যা হবে?
[ বিসিএস ৩২তম ]
দুটি বিজোড় সংখ্যার যোগফল সবসময় একটি জোড় সংখ্যা হয়।
উদাহরণস্বরূপ, যদি x = ৩ এবং y = ৫ হয়, তাহলে: x + y = ৩ + ৫ = ৮ যেখানে ৮ একটি জোড় সংখ্যা।
প্রশ্নঃ নিচের কোনটি মৌলিক সংখ্যা?
[ বিসিএস ৩১তম ]
আমরা জানি, যে সংখ্যাকে ১ এবং ঐ সংখ্যা ভিন্ন অন্য কোনো সংখ্যা দ্বারা নিঃশেষে ভাগ করা যায় না, তাকে মৌলিক সংখ্যা বলে। এখানে, উপরিউক্ত সংখ্যাগুলোর মধ্যে ৫৯ সংখ্যাটি মৌলিক সংখ্যা।
১০ থেকে ৬০ এর মধ্যে মৌলিক সংখ্যা: \[ 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59 \] এখন, যেসব সংখ্যার একক স্থান ৯:
19
29
59
এদের যোগফল:
\[ 19 + 29 + 59 = 107 \]
সুতরাং, উত্তর: ১০৭ ✅
৬০ ও ৮০ এর মধ্যে সর্বনিম্ন ও সর্বোচ্চ মৌলিক সংখ্যা হচ্ছে যথাক্রমে ৬১ ও ৭৯। ∴ এ দুটি সংখ্যার অন্তর হবে (৭৯ - ৬১) = ১৮।
প্রশ্নঃ ৪৩ থেকে ৬০ এর মধ্যে মৌলিক সংখ্যার সংখ্যা–
[ বিসিএস ২৬তম ]
৪৩ থেকে ৬০ এর মধ্যে মৌলিক সংখ্যা (প্রাইম নম্বর) হল:
৪৩, ৪৭, ৫৩, ৫৯
এই সংখ্যা গুলির মধ্যে মৌলিক সংখ্যা হলো মোট ৪টি।
প্রশ্নঃ যদি $$p$$ একটি মৌলিক সংখ্যা হয় তবে $$\sqrt{p}$$ -
[ বিসিএস ২৬তম ]
প্রশ্নঃ $$\sqrt{2}$$ সংখ্যাটি কি সংখ্যা?
[ বিসিএস ২৫তম ]
প্রশ্নঃ কোন কোন স্বাভাবিক সংখ্যা দ্বারা ৩৪৬ কে ভাগ করলে প্রতি ক্ষেত্রে ৩১ অবশিষ্ট থাকে?
[ বিসিএস ২২তম ]
প্রশ্নঃ দুটি ক্রমিক সংখ্যার বর্গের অন্তর ১৯৯ হলে বড় সংখ্যাটি কত?
[ বিসিএস ২২তম ]
প্রশ্নঃ ৯৯৯৯৯৯-এর সঙ্গে কোন ক্ষুদ্রতম সংখ্যা যোগ করলে যোগফল ২, ৩, ৪, ৫ এবং ৬ দ্বারা নিঃশেষে বিভাজ্য হবে?
[ বিসিএস ২১তম ]
### ধাপ ১: ল.সা.গু নির্ণয় প্রথমে ২, ৩, ৪, ৫, ৬ সংখ্যাগুলোর ল.সা.গু (LCM) বের করি— \[ \text{LCM} (2, 3, 4, 5, 6) = 60 \] অর্থাৎ, \( ৯৯৯৯৯৯ + x \) সংখ্যাটি ৬০ দ্বারা বিভাজ্য হতে হবে। ### ধাপ ২: ৯৯৯৯৯৯ সংখ্যাটিকে ৬০ দ্বারা ভাগ করে অবশিষ্ট নির্ণয় \[ 999999 \div 60 = 16666 \text{ (ভাগফল), অবশিষ্ট } 39 \] অতএব, \( ৯৯৯৯৯৯ \) সংখ্যাটিকে ৬০ দ্বারা বিভাজ্য করতে অবশিষ্ট ৩৯ বাদ দিতে হবে।
অর্থাৎ, \( x = 60 - 39 = 21 \) ### উত্তর:
ক্ষুদ্রতম সংখ্যা হলো ২১।
অর্থাৎ, \( ৯৯৯৯৯৯ + ২১ = ১০০০০২০ \) হবে, যা ২, ৩, ৪, ৫ এবং ৬ দ্বারা নিঃশেষে বিভাজ্য। ????
বিয়োজনের সূত্র অনুযায়ী: \[ \Delta = b^2 - 4ac \] এখানে, \( a = 1 \), \( b = p \), এবং \( c = 6 \)।
তাহলে, \[ \Delta = p^2 - 4 \times 1 \times 6 \] \[ 0 = p^2 - 24 \] \[ p^2 = 24 \] \[ p = \sqrt{24} \] পরে, \( p > 0 \) হওয়ার কারণে, \( p = \sqrt{24} \) হবে।
অতএব, \( p \) এর মান হলো \( \sqrt{24} \)।
প্রশ্নঃ নিম্নলিখিত চারটি সংখ্যার মধ্যে কোনটির ভাজক সংখ্যা বিজোড়?
[ বিসিএস ১৬তম ]
যদি সংখ্যা পূর্ণ বর্গসংখ্যা হয় তবে সেটির ভাজক সংখ্যা বিজোড় হবে।
তাহলে আসুন আবার দেখি কোন সংখ্যার ভাজক সংখ্যা আসলেই বিজোড়।
আসুন বিশ্লেষণ করি:
- ক: ২০৪৮: ২০৪৮ = 2^11, 2 এর যেকোন গুণনীয়ক পূর্ণ বর্গসংখ্যা নয়।
- খ: ৫১২: ৫১২ = 2^9, এটি ও পূর্ণ বর্গসংখ্যা নয়।
- গ: ১০২৪: ১০২৪ = 2^10, এটি পূর্ণ বর্গসংখ্যা।
- ঘ: ৪৮: ৪৮ এর কোনও গুণনীয়ক পূর্ণ বর্গসংখ্যা নয়।
তাহলে: গ: ১০২৪ এর ভাজক সংখ্যা বিজোড় কারণ এটি পূর্ণ বর্গসংখ্যা।
প্রশ্নঃ দুই অঙ্কবিশিষ্ট একটি সংখ্যার এককের অঙ্ক দশকের অঙ্ক অপেক্ষা ৩ বেশি। সংখ্যাটি এর অঙ্কদ্বয়ের সমষ্টির তিনগুণ অপেক্ষা ৪ বেশি। সংখ্যাটি কত?
[ বিসিএস ১৪তম ]
প্রশ্ন অনুযায়ী:
1. এককের অঙ্ক দশকের অঙ্ক অপেক্ষা ৩ বেশি: \[ y = x + 3 \] 2. সংখ্যাটি এর অঙ্কদ্বয়ের সমষ্টির তিনগুণ অপেক্ষা ৪ বেশি: \[ 10x + y = 3(x + y) + 4 \] এখন আমরা এই দুটি সমীকরণ সমাধান করি।
প্রথম সমীকরণ থেকে: \[ y = x + 3 \] এটি দ্বিতীয় সমীকরণে প্রতিস্থাপন করি: \[ 10x + (x + 3) = 3(x + (x + 3)) + 4 \] \[ 10x + x + 3 = 3(2x + 3) + 4 \] \[ 11x + 3 = 6x + 9 + 4 \] \[ 11x + 3 = 6x + 13 \] এখন \( x \) নির্ণয় করি: \[ 11x - 6x = 13 - 3 \] \[ 5x = 10 \] \[ x = 2 \] এখন \( y \) নির্ণয় করি: \[ y = x + 3 \] \[ y = 2 + 3 \] \[ y = 5 \] অতএব, সংখ্যাটি হলো \( 10x + y = 10 \times 2 + 5 = 25 \)।
অতএব, সংখ্যাটি হলো ২৫।
ধাপ ১: \(\sqrt{2}\) এবং \(\sqrt{3}\) এর মান নির্ণয় \[ \sqrt{2} \approx 1.4142 \\ \sqrt{3} \approx 1.7321 \] ধাপ ২: মধ্যবর্তী মূলদ সংখ্যা নির্ণয়
\(\sqrt{2}\) এবং \(\sqrt{3}\) এর মধ্যবর্তী একটি মূলদ সংখ্যা হলো তাদের গড়: \[ \text{গড়} = \frac{\sqrt{2} + \sqrt{3}}{2} \approx \frac{1.4142 + 1.7321}{2} = \frac{3.1463}{2} \approx 1.5731 \] ধাপ ৩: মূলদ সংখ্যা হিসেবে প্রকাশ
এই মানটি একটি মূলদ সংখ্যা হিসেবে প্রকাশ করা যায়। উদাহরণস্বরূপ, \(1.5\) বা \(\frac{3}{2}\) একটি মূলদ সংখ্যা যা \(\sqrt{2}\) এবং \(\sqrt{3}\) এর মধ্যবর্তী।
ফলাফল
\(\sqrt{2}\) এবং \(\sqrt{3}\) এর মধ্যবর্তী একটি মূলদ সংখ্যা হলো \(1.5\) বা \(\frac{3}{2}\)।
প্রশ্নঃ ১ হতে ৩০ পর্যন্ত কয়টি মৌলিক সংখ্যা আছে?
[ বিসিএস ১০তম ]
প্রশ্নঃ ১২৫ সংখ্যাকে কত দ্বারা গুণ করলে সংখ্যাটি পূর্ণ বর্গ সংখ্যা হবে?
[ প্রা.বি.স.শি. 29-03-2024 ]
তাহলে, \(125\)-কে \(5\) দ্বারা গুণ করতে হবে।
উত্তর: \(125\)-কে \(5\) দ্বারা গুণ করলে এটি একটি পূর্ণ বর্গ সংখ্যা হবে।
প্রশ্নঃ নিচের কোনটি মৌলিক সংখ্যা?
[ প্রা.বি.স.শি. 22-04-2022 ]
মৌলিক সংখ্যা (Prime Number) হলো এমন একটি সংখ্যা যা শুধুমাত্র ১ এবং নিজেই দ্বারা বিভাজ্য। অর্থাৎ, এই ধরনের সংখ্যার একমাত্র গুণনীয়ক হল ১ এবং নিজেই।
২: এটি শুধুমাত্র ১ এবং নিজেই দ্বারা বিভাজ্য, তাই ২ মৌলিক সংখ্যা।
প্রশ্নঃ চার অংকের বৃহত্তম সংখ্যা হতে তিন অংকের ক্ষুদ্রতম সংখ্যা বিয়োগ করলে বিয়োগফল কত হবে?
[ প্রা.বি.স.শি. 22-04-2022 ]
চার অংকের বৃহত্তম সংখ্যা হলো ৯৯৯৯ এবং তিন অংকের ক্ষুদ্রতম সংখ্যা হলো ১০০। এখন এগুলো বিয়োগ করলে:
৯৯৯৯ - ১০০ = ৯৮৯৯
অতএব, বিয়োগফল হলো ৯৮৯৯।
প্রশ্নঃ প্রথম ১০টি বিজোড় সংখ্যার যােগফল কত?
[ প্রা.বি.স.শি. 22-04-2022 ]
আমরা জানি,
ক সংখ্যক ক্রমিক স্বাভাবিক বিজোড় সংখ্যার যোগফল = ক²
সুতরাং ১০টি ক্রমিক স্বাভাবিক বিজোড় সংখ্যার যোগফল = ১০² = ১০০
উত্তরঃ ১০০
প্রশ্নঃ ০৪ থেকে ৮৪ পর্যন্ত ৪ দ্বারা বিভাজ্য সংখ্যাগুলোকে বড় হতে ছোট হিসেবে সাজালে ৮ম সংখ্যাটি কত হবে?
[ প্রা.বি.স.শি. 22-04-2022 ]
প্রশ্নঃ তিনটি পরপর মৌলিক প্রথম দুইটির গুণফল ৯১, শেষ দুইটির গুণফল ১৪৩ হলে সংখ্যা তিনটি কত?
[ প্রা.বি.স.শি. 26-06-2019 ]
প্রশ্ন অনুযায়ী,
প্রথম দুটি সংখ্যা \( p \) এবং \( q \), যাদের গুণফল: \[ p \times q = 91 \] শেষ দুটি সংখ্যা \( q \) এবং \( r \), যাদের গুণফল: \[ q \times r = 143 \] এখন, আমরা মৌলিক সংখ্যাগুলো পরীক্ষা করি—
\( 91 = 7 \times 13 \),
\( 143 = 11 \times 13 \)।
এখানে \( q = 13 \) হলে, প্রথম সংখ্যা \( p = 7 \) এবং শেষ সংখ্যা \( r = 11 \)।
সুতরাং, তিনটি পরপর মৌলিক সংখ্যা ৭, ১৩, ১১।
প্রশ্নঃ কোন কোন স্বাভাবিক সংখ্যা দ্বারা ৩৬৬ কে ভাগ করলে প্রতি ক্ষেত্রে ৩১ অবশিষ্ট থাকবে?
[ প্রা.বি.স.শি. 21-06-2019 ]
এখন, দেওয়া অপশনগুলোর সংখ্যা বিশ্লেষণ করি এবং ৩৩৫ দ্বারা বিভাজ্য সংখ্যাগুলো চিহ্নিত করি।
৩৩৫-এর গুণনীয়ক: \[ 335 = 5 \times 67 \] অর্থাৎ, \( 335 \) শুধুমাত্র ৫ এবং ৬৭ দ্বারা বিভাজ্য।
প্রশ্নঃ ১০ থেকে ৬০ পর্যন্ত যে সকল মৌলিক সংখ্যার একক স্থানীয় অংক ৯ , তাদের সমষ্টি কত?
[ প্রা.বি.স.শি. 31-05-2019 ]
যে সকল সংখ্যার একক স্থানীয় অংক ৯ হয়:
১৯, ২৯, ৩৯, ৪৯, ৫৯
এখন, এই সংখ্যাগুলোর মধ্যে মৌলিক সংখ্যাগুলো খুঁজে বের করি:
- ১৯: এটি একটি মৌলিক সংখ্যা (১ এবং ১৯ ছাড়া এর কোনো উৎপাদক নেই)।
- ২৯: এটি একটি মৌলিক সংখ্যা (১ এবং ২৯ ছাড়া এর কোনো উৎপাদক নেই)।
- ৩৯: এটি মৌলিক সংখ্যা নয় ($3 \times 13 = 39$)।
- ৪৯: এটি মৌলিক সংখ্যা নয় ($7 \times 7 = 49$)।
- ৫৯: এটি একটি মৌলিক সংখ্যা (১ এবং ৫৯ ছাড়া এর কোনো উৎপাদক নেই)।
সুতরাং, ১০ থেকে ৬০ পর্যন্ত যে সকল মৌলিক সংখ্যার একক স্থানীয় অংক ৯, তারা হলো: ১৯, ২৯, ৫৯।
তাদের সমষ্টি:
$১৯ + ২৯ + ৫৯ = ১০৭$
উত্তর: তাদের সমষ্টি ১০৭।
প্রশ্নঃ ০, ১, ২ এবং ৩ দ্বারা গঠিত চার অঙ্কের বৃহত্তম ও ক্ষুদ্রতম সংখ্যার বিয়োগফল -
[ প্রা.বি.স.শি. 31-05-2019 ]
৩, ২, ১, ০
সুতরাং, বৃহত্তম সংখ্যাটি = ৩২১০
৪ অঙ্কের ক্ষুদ্রতম সংখ্যাটি তৈরি করতে, সবচেয়ে ছোট অঙ্ক থেকে বড় অঙ্ক ক্রমানুসারে সাজাতে হবে। তবে, ০ কে প্রথমে বসালে সেটি ৪ অঙ্কের সংখ্যা হবে না (যেমন: ০১২৩ মানে ১২৩)। তাই, ০ বাদে সবচেয়ে ছোট অঙ্কটি প্রথমে বসাতে হবে, তারপর ০ এবং বাকি অঙ্কগুলো ক্রমানুসারে সাজাতে হবে।
১, ০, ২, ৩
সুতরাং, ক্ষুদ্রতম সংখ্যাটি = ১০২৩
এবার, বৃহত্তম ও ক্ষুদ্রতম সংখ্যার বিয়োগফল নির্ণয় করি:
$৩২১০ - ১০২৩ = ২১৮৭$
উত্তর: ০, ১, ২ এবং ৩ দ্বারা গঠিত ৪ অঙ্কের বৃহত্তম ও ক্ষুদ্রতম সংখ্যার বিয়োগফল হলো ২১৮৭।