আমাদের স্কুল

সেটিং

বহুনির্বাচনি প্রশ্নের দেখানোর অপশনঃ
শুধুমাত্র উত্তর 2 অপশন
3 অপশন 4 অপশন
বহুনির্বাচনি প্রশ্নের অপশন প্রদর্শনঃ
রো আকারে কলাম আকারে
বহুনির্বাচনি প্রশ্নের উত্তরঃ
লুকান বোল্ড করুন
দেখান দেখান ও বোল্ড করুন
বহুনির্বাচনি প্রশ্নের ব্যাখ্যাঃ
দেখান লুকান নিচে লুকান
থিম নির্বাচন করুনঃ
ফন্ট সাইজঃ
15

প্রশ্নঃ নিচের কোনটি অমূলদ সংখ্যা?

[ বিসিএস ৪০তম ]

ক. 0.4
খ. $$\sqrt{9}$$
গ. 5.639
ঘ. $$\sqrt{\frac{27}{48}}$$
উত্তরঃ
ব্যাখ্যাঃ অমূলদ সংখ্যা হলো সেই সংখ্যা যাকে $\frac{p}{q}$আকারে প্রকাশ করা যায় না, যেখানে p এবং q পূর্ণসংখ্যা এবং$q \neq 0$.

এখন আমরা প্রতিটি বিকল্প পরীক্ষা করব:

কঃ 0.4
$0.4 = \frac{4}{10} = \frac{2}{5}$
যেহেতু এটিকে$\frac{p}{q}$ আকারে প্রকাশ করা যায়, তাই এটি মূলদ সংখ্যা।

খঃ $\sqrt{9}$
$\sqrt{9} = 3 = \frac{3}{1}$যেহেতু এটিকে$\frac{p}{q}$ আকারে প্রকাশ করা যায়, তাই এটি মূলদ সংখ্যা।

গঃ 5.639
$5.639 = \frac{5639}{1000}$যেহেতু এটিকে$\frac{p}{q}$ আকারে প্রকাশ করা যায়, তাই এটি মূলদ সংখ্যা।

ঘঃ $\sqrt{\frac{27}{48}}$
প্রথমে ভগ্নাংশটিকে সরল করা যাক:$\frac{27}{48} = \frac{9 \times 3}{16 \times 3} = \frac{9}{16}$
সুতরাং,$\sqrt{\frac{27}{48}} = \sqrt{\frac{9}{16}} = \frac{\sqrt{9}}{\sqrt{16}} = \frac{3}{4}$যেহেতু এটিকে$\frac{p}{q}$ আকারে প্রকাশ করা যায়, তাই এটি মূলদ সংখ্যা।