আমাদের স্কুল

সেটিং

বহুনির্বাচনি প্রশ্নের দেখানোর অপশনঃ
শুধুমাত্র উত্তর 2 অপশন
3 অপশন 4 অপশন
বহুনির্বাচনি প্রশ্নের অপশন প্রদর্শনঃ
রো আকারে কলাম আকারে
বহুনির্বাচনি প্রশ্নের উত্তরঃ
লুকান বোল্ড করুন
দেখান দেখান ও বোল্ড করুন
বহুনির্বাচনি প্রশ্নের ব্যাখ্যাঃ
দেখান লুকান নিচে লুকান
থিম নির্বাচন করুনঃ
ফন্ট সাইজঃ
15

প্রশ্নঃ দুই অঙ্কবিশিষ্ট একটি সংখ্যার এককের অঙ্ক দশকের অঙ্ক অপেক্ষা ৩ বেশি। সংখ্যাটি এর অঙ্কদ্বয়ের সমষ্টির তিনগুণ অপেক্ষা ৪ বেশি। সংখ্যাটি কত?

[ বিসিএস ১৪তম ]

ক. ৪৭
খ. ৩৬
গ. ২৫
ঘ. ১৪
উত্তরঃ ২৫
ব্যাখ্যাঃ ধরি, সংখ্যাটির দশকের অঙ্ক \( x \) এবং এককের অঙ্ক \( y \)।

প্রশ্ন অনুযায়ী:
1. এককের অঙ্ক দশকের অঙ্ক অপেক্ষা ৩ বেশি: \[ y = x + 3 \] 2. সংখ্যাটি এর অঙ্কদ্বয়ের সমষ্টির তিনগুণ অপেক্ষা ৪ বেশি: \[ 10x + y = 3(x + y) + 4 \] এখন আমরা এই দুটি সমীকরণ সমাধান করি।

প্রথম সমীকরণ থেকে: \[ y = x + 3 \] এটি দ্বিতীয় সমীকরণে প্রতিস্থাপন করি: \[ 10x + (x + 3) = 3(x + (x + 3)) + 4 \] \[ 10x + x + 3 = 3(2x + 3) + 4 \] \[ 11x + 3 = 6x + 9 + 4 \] \[ 11x + 3 = 6x + 13 \] এখন \( x \) নির্ণয় করি: \[ 11x - 6x = 13 - 3 \] \[ 5x = 10 \] \[ x = 2 \] এখন \( y \) নির্ণয় করি: \[ y = x + 3 \] \[ y = 2 + 3 \] \[ y = 5 \] অতএব, সংখ্যাটি হলো \( 10x + y = 10 \times 2 + 5 = 25 \)।

অতএব, সংখ্যাটি হলো ২৫।