আমাদের স্কুল

সেটিং

বহুনির্বাচনি প্রশ্নের দেখানোর অপশনঃ
শুধুমাত্র উত্তর 2 অপশন
3 অপশন 4 অপশন
বহুনির্বাচনি প্রশ্নের অপশন প্রদর্শনঃ
রো আকারে কলাম আকারে
বহুনির্বাচনি প্রশ্নের উত্তরঃ
লুকান বোল্ড করুন
দেখান দেখান ও বোল্ড করুন
বহুনির্বাচনি প্রশ্নের ব্যাখ্যাঃ
দেখান লুকান নিচে লুকান
থিম নির্বাচন করুনঃ
ফন্ট সাইজঃ
15

প্রশ্নঃ নিচের কোন পূর্ণ সংখ্যাটি ৩, ৪, ৫ এবং ৬ দ্বারা ভাগ করলে যথাক্রমে ১, ২, ৩ ও ৪ অবশিষ্ট থাকে?

[ বিসিএস ৪০তম ]

ক. ৪৮
খ. ৫৪
গ. ৫৮
ঘ. ৬০
উত্তরঃ ৫৮
ব্যাখ্যাঃ মনে করি সেই পূর্ণ সংখ্যাটি হলো $x$.

প্রশ্নানুসারে, সংখ্যাটিকে ৩, ৪, ৫ এবং ৬ দ্বারা ভাগ করলে যথাক্রমে ১, ২, ৩ ও ৪ অবশিষ্ট থাকে। এটিকে আমরা গাণিতিকভাবে এভাবে লিখতে পারি:

$x \equiv 1 \pmod{3}$
$x \equiv 2 \pmod{4}$
$x \equiv 3 \pmod{5}$
$x \equiv 4 \pmod{6}$

লক্ষ করলে দেখা যায়, প্রতিটি ক্ষেত্রে ভাজক এবং অবশিষ্টের মধ্যে পার্থক্য একই:

$3 - 1 = 2$
$4 - 2 = 2$
$5 - 3 = 2$
$6 - 4 = 2$

এর মানে হলো, যদি আমরা $x$-এর সাথে ২ যোগ করি, তাহলে সংখ্যাটি ৩, ৪, ৫ এবং ৬ দ্বারা সম্পূর্ণরূপে বিভাজ্য হবে। অর্থাৎ, $x + 2$ সংখ্যাটি ৩, ৪, ৫ এবং ৬ এর লঘিষ্ঠ সাধারণ গুণিতক (LCM)।

এখন আমরা ৩, ৪, ৫ এবং ৬ এর LCM বের করি:

৩ = ৩
৪ = $2^2$
৫ = ৫
৬ = $2 \times 3$

LCM(৩, ৪, ৫, ৬) = $2^2 \times 3 \times 5 = 4 \times 3 \times 5 = 60$

সুতরাং, $x + 2 = 60k$, যেখানে $k$ একটি পূর্ণ সংখ্যা। যেহেতু আমরা ক্ষুদ্রতম পূর্ণ সংখ্যাটি খুঁজছি, তাই আমরা $k = 1$ ধরব।

$x + 2 = 60 \times 1$
$x + 2 = 60$
$x = 60 - 2$
$x = 58$

অতএব, সেই পূর্ণ সংখ্যাটি হলো ৫৮।