আমাদের স্কুল

সেটিং

বহুনির্বাচনি প্রশ্নের দেখানোর অপশনঃ
শুধুমাত্র উত্তর 2 অপশন
3 অপশন 4 অপশন
বহুনির্বাচনি প্রশ্নের অপশন প্রদর্শনঃ
রো আকারে কলাম আকারে
বহুনির্বাচনি প্রশ্নের উত্তরঃ
লুকান বোল্ড করুন
দেখান দেখান ও বোল্ড করুন
বহুনির্বাচনি প্রশ্নের ব্যাখ্যাঃ
দেখান লুকান নিচে লুকান
থিম নির্বাচন করুনঃ
ফন্ট সাইজঃ
15

 ৪৮
 ৫৪
 ৫৮
 ৬০
ব্যাখ্যাঃ মনে করি সেই পূর্ণ সংখ্যাটি হলো $x$.

প্রশ্নানুসারে, সংখ্যাটিকে ৩, ৪, ৫ এবং ৬ দ্বারা ভাগ করলে যথাক্রমে ১, ২, ৩ ও ৪ অবশিষ্ট থাকে। এটিকে আমরা গাণিতিকভাবে এভাবে লিখতে পারি:

$x \equiv 1 \pmod{3}$
$x \equiv 2 \pmod{4}$
$x \equiv 3 \pmod{5}$
$x \equiv 4 \pmod{6}$

লক্ষ করলে দেখা যায়, প্রতিটি ক্ষেত্রে ভাজক এবং অবশিষ্টের মধ্যে পার্থক্য একই:

$3 - 1 = 2$
$4 - 2 = 2$
$5 - 3 = 2$
$6 - 4 = 2$

এর মানে হলো, যদি আমরা $x$-এর সাথে ২ যোগ করি, তাহলে সংখ্যাটি ৩, ৪, ৫ এবং ৬ দ্বারা সম্পূর্ণরূপে বিভাজ্য হবে। অর্থাৎ, $x + 2$ সংখ্যাটি ৩, ৪, ৫ এবং ৬ এর লঘিষ্ঠ সাধারণ গুণিতক (LCM)।

এখন আমরা ৩, ৪, ৫ এবং ৬ এর LCM বের করি:

৩ = ৩
৪ = $2^2$
৫ = ৫
৬ = $2 \times 3$

LCM(৩, ৪, ৫, ৬) = $2^2 \times 3 \times 5 = 4 \times 3 \times 5 = 60$

সুতরাং, $x + 2 = 60k$, যেখানে $k$ একটি পূর্ণ সংখ্যা। যেহেতু আমরা ক্ষুদ্রতম পূর্ণ সংখ্যাটি খুঁজছি, তাই আমরা $k = 1$ ধরব।

$x + 2 = 60 \times 1$
$x + 2 = 60$
$x = 60 - 2$
$x = 58$

অতএব, সেই পূর্ণ সংখ্যাটি হলো ৫৮।
 57
 75
 57
 93
ব্যাখ্যাঃ ধরি
সংখ্যাটির একক স্থানীয় অংক x
" দশক " " y
$\therefore$ সংখ্যাটি $= x + 10y$
প্রশ্নমতে
$10x + y = x + 10y + 54$
$\Rightarrow 10x - x + y - 10y = 54$
$9x - 9y = 54$
$\therefore x - y = 6$ ...................... (i)
আবার, $x + y = 12$ .........(ii)
(i) + (ii) হতে পাই
$2x = 18$
$\therefore x = 9$
(i) এ x এর মান বসাই
$9 - y = 6$ $\therefore y = 3$
$\therefore$ সংখ্যাটি $= x + 10y = 9 + 10 \times 3 = 39$
 $$3147$$
 $$2287$$
 $$2987$$
 $$2187$$
ব্যাখ্যাঃ $0, 1, 2, 3$ অঙ্কগুলো ব্যবহার করে গঠিত চার অঙ্কের বৃহত্তম সংখ্যাটি হলো ৩২১০।

একই অঙ্কগুলো ব্যবহার করে গঠিত চার অঙ্কের ক্ষুদ্রতম সংখ্যাটি হলো ১০২৩। (কারণ, ০ দিয়ে শুরু করলে সেটি তিন অঙ্কের সংখ্যা হবে)।

এখন, সংখ্যা দুটির বিয়োগফল:
$৩২১০ - ১০২৩ = ২১৮৭$।
 ৮৯
 ৭০
 ১৭০
 ১৪২
ব্যাখ্যাঃ

২১২, ১৮, ২৪ ৩৬, ৯, ১২ ২২, ৩, ৪ ১, ৩, ২ ১২, ১৮ এবং ২৪ এর ল.সা.গু = ২ × ৩×২×১× ৩×২=৭২ .. নির্ণেয় সংখ্যা = ৭২ - ২ = ৭০

 ৩৪০
 ৩৪১
 ৩৪২
 ৩৪৪
ব্যাখ্যাঃ
ধরি, সংখ্যাটি $x$।
প্রশ্নানুসারে, $x$ সংখ্যাটি ৩০১ থেকে যত বড়, ৩৮১ থেকে তত ছোট।
সুতরাং, $x$ এবং ৩০১ এর মধ্যে পার্থক্য, $x$ এবং ৩৮১ এর মধ্যে পার্থক্যের সমান।
$x - 301 = 381 - x$

এখন, এই সমীকরণটি সমাধান করে $x$ এর মান বের করি:
$x + x = 381 + 301$
$2x = 682$
$x = \frac{682}{2}$
$x = 341$

সুতরাং, সংখ্যাটি ৩৪১।
 $$০.০১১১১$$
 $$১.১১১১$$
 $$১১.১১০১$$
 $$১.১০১১১$$
ব্যাখ্যাঃ প্রদত্ত সংখ্যাগুলো যোগ করি: \[ 1.1 + 0.01 + 0.0011 \] ধাপে ধাপে যোগ করলে, \[ 1.1 + 0.01 = 1.11 \] \[ 1.11 + 0.0011 = 1.1111 \] সুতরাং, উত্তর: 1.1111
 ৯
 ১২
 ১৪
 ১৫
ব্যাখ্যাঃ ধরি, পরপর তিনটি সংখ্যা হলো \( x-1, x, x+1 \)। তাহলে তাদের গুণফল দেওয়া আছে, \[ (x-1) \times x \times (x+1) = 120 \] ### ধাপ ১: সমীকরণ গঠন \[ x(x^2 - 1) = 120 \] \[ x^3 - x = 120 \] \[ x^3 = 121 \] ### ধাপ ২: যথাযথ মান বের করা আমরা 3, 4, 5 সংখ্যাগুলো পরীক্ষা করি: \[ (3-1) \times 3 \times (3+1) = 2 \times 3 \times 4 = 24 \neq 120 \] \[ (4-1) \times 4 \times (4+1) = 3 \times 4 \times 5 = 60 \neq 120 \] \[ (5-1) \times 5 \times (5+1) = 4 \times 5 \times 6 = 120 \] ### ধাপ ৩: যোগফল বের করা \[ 4 + 5 + 6 = 15 \] ✅ উত্তর: ১৫
 3
 6
 9
 18
ব্যাখ্যাঃ আমরা ধাপে ধাপে সমস্যাটির সমাধান করবো। ### ধাপ ১: দেওয়া তথ্য বিশ্লেষণ - ২ জন টাইপিস্ট ২ মিনিটে ২ পৃষ্ঠা টাইপ করতে পারে। - অর্থাৎ, ২ জন টাইপিস্ট ১ মিনিটে টাইপ করতে পারে: \[ \frac{2 \text{ পৃষ্ঠা}}{2 \text{ মিনিট}} = 1 \text{ পৃষ্ঠা প্রতি মিনিট} \] সুতরাং, ২ জন টাইপিস্ট একসাথে ১ মিনিটে ১ পৃষ্ঠা টাইপ করতে পারে। ### ধাপ ২: ১ জন টাইপিস্ট কত টাইপ করে তা বের করা যেহেতু ২ জন টাইপিস্ট ১ মিনিটে ১ পৃষ্ঠা টাইপ করতে পারে, তাই ১ জন টাইপিস্ট টাইপ করবে: \[ \frac{1 \text{ পৃষ্ঠা প্রতি মিনিট}}{2} = 0.5 \text{ পৃষ্ঠা প্রতি মিনিট} \] ### ধাপ ৩: প্রয়োজনীয় টাইপিং হার নির্ণয় করা আমাদের ৬ মিনিটে ১৮ পৃষ্ঠা টাইপ করতে হবে। সুতরাং, প্রয়োজনীয় টাইপিং হার হবে: \[ \frac{18 \text{ পৃষ্ঠা}}{6 \text{ মিনিট}} = 3 \text{ পৃষ্ঠা প্রতি মিনিট} \] ### ধাপ ৪: প্রয়োজনীয় টাইপিস্ট সংখ্যা নির্ণয় করা যেহেতু ১ জন টাইপিস্ট ১ মিনিটে ০.৫ পৃষ্ঠা টাইপ করতে পারে, তাই ৩ পৃষ্ঠা প্রতি মিনিট টাইপ করতে প্রয়োজন হবে: \[ \frac{3 \text{ পৃষ্ঠা প্রতি মিনিট}}{0.5 \text{ পৃষ্ঠা প্রতি মিনিট প্রতি টাইপিস্ট}} = 6 \text{ টাইপিস্ট} \] ### উত্তর: ৬ জন টাইপিস্ট লাগবে ১৮ পৃষ্ঠা টাইপ করতে ৬ মিনিটে।
 ৯টি
 ১০টি
 ১১টি
 ১২টি
ব্যাখ্যাঃ একটি সংখ্যার মোট ভাজক সংখ্যা নির্ণয় করতে প্রথমে তার মৌলিক গুণনীয়কের মাধ্যেমে বিশ্লেষণ করি।
৭২ কে মৌলিক গুণনীয়কে বিশ্লেষণ করলে পাই: $$ 72 = 2^3 \times 3^2 $$ এখন, মোট ভাজক সংখ্যা নির্ণয়ের সূত্র ব্যবহার করি: \((a+1)(b+1)\), যেখানে \(a\) এবং \(b\) হল প্রদত্ত মৌলিক গুণকের মাধ্যেমে নির্দিষ্ট সংখ্যা।
এখানে \(2^3\) এর ২ এর ঘাত \(৩\), এবং \(3^2\) এর ৩ এর ঘাত \(২\)। তাহলে মোট ভাজক সংখ্যা হবে: $$(3+1)(2+1) = 4 \times 3 = 12 $$ সুতরাং, ৭২ সংখ্যাটির মোট ১২টি ভাজক আছে।
 ৭৩০
 ৭৩৫
 ৮০০
 ৭৮০
ব্যাখ্যাঃ ধরি, সংখ্যাটি \(x\)। প্রশ্নানুসারে: \[ x - 650 = 820 - x \] এখন সমীকরণটি সমাধান করি: \[ x - 650 = 820 - x \] \[ x + x = 820 + 650 \] \[ 2x = 1470 \] \[ x = \frac{1470}{2} = 735 \] উত্তর: \[ \boxed{735} \]
 ১৬
 ১৮
 ২০
 ২৪
ব্যাখ্যাঃ ধরি, সেই সংখ্যা \( x \)।

প্রশ্নে দেয়া শর্ত অনুযায়ী: \[ 3x + 2x = 90 \] অতএব, \[ 5x = 90 \] \[ x = \frac{90}{5} \] \[ x = 18 \] অতএব, সংখ্যাটি হলো ১৮। আপনার কি আরও কিছু জানতে ইচ্ছে আছে?
 ২১
 ২৩
 ২৪
 ২২
ব্যাখ্যাঃ ১২ ও ৯৬ এর মধ্যে (এ দুটি সংখ্যাসহ) ৪ দ্বারা বিভাজ্য সংখ্যাগুলো বের করতে হবে।

### ধাপ ১: প্রথম ৪ দ্বারা বিভাজ্য সংখ্যা নির্ণয়
১২ কে ৪ দ্বারা ভাগ করলে ভাগফল হয় ৩, এবং কোনো ভাগশেষ থাকে না। তাই ১২ হলো প্রথম ৪ দ্বারা বিভাজ্য সংখ্যা।

### ধাপ ২: শেষ ৪ দ্বারা বিভাজ্য সংখ্যা নির্ণয়
৯৬ কে ৪ দ্বারা ভাগ করলে ভাগফল হয় ২৪, এবং কোনো ভাগশেষ থাকে না। তাই ৯৬ হলো শেষ ৪ দ্বারা বিভাজ্য সংখ্যা।
### ধাপ ৩: সমান্তর ধারা ব্যবহার করে সংখ্যাগুলো গণনা
এখানে সমান্তর ধারার প্রথম পদ (\( a \)) = ১২, সাধারণ অন্তর (\( d \)) = ৪, এবং শেষ পদ (\( l \)) = ৯৬।

সমান্তর ধারার পদ সংখ্যা নির্ণয়ের সূত্র: \[ n = \frac{l - a}{d} + 1 \] মান বসিয়ে: \[ n = \frac{96 - 12}{4} + 1 \] \[ n = \frac{84}{4} + 1 \] \[ n = 21 + 1 \] \[ n = 22 \] উত্তর: ১২ ও ৯৬ এর মধ্যে (এ দুটি সংখ্যাসহ) মোট ২২টি সংখ্যা ৪ দ্বারা বিভাজ্য।
 ৮৯
 ১৪১
 ২৪৮
 ১৭০
ব্যাখ্যাঃ সমস্যাটি সমাধান করার জন্য আমাদের একটি লঘিষ্ঠ সংখ্যা \( x \) বের করতে হবে, যাতে \( x + 3 \) সংখ্যাটি ২৪, ৩৬ এবং ৪৮ দ্বারা বিভাজ্য হয়।

### ধাপ ১: ২৪, ৩৬ এবং ৪৮ এর লঘিষ্ঠ সাধারণ গুণিতক (LCM) বের করা প্রথমে ২৪, ৩৬ এবং ৪৮ এর LCM বের করব।

- ২৪ এর মৌলিক উৎপাদক: \( 2^3 \times 3 \)
- ৩৬ এর মৌলিক উৎপাদক: \( 2^2 \times 3^2 \)
- ৪৮ এর মৌলিক উৎপাদক: \( 2^4 \times 3 \)

LCM হলো সর্বোচ্চ ঘাতের মৌলিক উৎপাদকগুলোর গুণফল: \[ \text{LCM} = 2^4 \times 3^2 = 16 \times 9 = 144 \] ### ধাপ ২: \( x + 3 = 144 \)
যেহেতু \( x + 3 \) কে ২৪, ৩৬ এবং ৪৮ দ্বারা বিভাজ্য হতে হবে, তাই: \[ x + 3 = 144 \] ### ধাপ ৩: \( x \) এর মান বের করা \[ x = 144 - 3 = 141 \] উত্তর: লঘিষ্ঠ সংখ্যাটি হলো ১৪১
 ৬০
 ৬৪
 ৬২
 ৫০
ব্যাখ্যাঃ প্রদত্ত তথ্য অনুযায়ী,

- ১০টি সংখ্যার যোগফল = ৪৬২
- প্রথম ৪টির গড় = ৫২
- শেষের ৫টির গড় = ৩৮

প্রথম ৪টি সংখ্যার যোগফল হবে: \[ ৫২ \times ৪ = ২০৮ \] শেষের ৫টি সংখ্যার যোগফল হবে: \[ ৩৮ \times ৫ = ১৯০ \] এখন, প্রথম ৪টি সংখ্যা + পঞ্চম সংখ্যা + শেষের ৫টি সংখ্যা = মোট যোগফল \[ ২০৮ + x + ১৯০ = ৪৬২ \] \[ x = ৪৬২ - (২০৮ + ১৯০) \] \[ x = ৪৬২ - ৩৯৮ \] \[ x = ৬৪ \] সুতরাং, পঞ্চম সংখ্যাটি ৬৪
 2
 4
 -6
 -8
ব্যাখ্যাঃ \[ x - 2 = 0 \implies x = 2 \] এখানে, \(f(x) = x^3 - x^2\)। তাহলে, \(f(2) = 2^3 - 2^2 = 8 - 4 = 4\)। অতএব, অবশিষ্টাংশ হল \(4\)।
 ৯
 ১২
 ১৪
 ১৫
ব্যাখ্যাঃ ধরি, পরপর তিনটি সংখ্যা হলো \(x-1\), \(x\), এবং \(x+1\)। তাহলে তাদের গুণফল দেওয়া আছে: \[ (x-1) \cdot x \cdot (x+1) = 120 \] এটি একটি গুণফল সূত্র যেখানে \(x-1, x, x+1\) হলো ধারাবাহিক তিনটি সংখ্যা। এখানে \((x-1)(x)(x+1)\) হলো ক্রমিক গুণনীয়ক: \[ x(x^2 - 1) = 120 \] সরল করলে পাই: \[ x^3 - x = 120 \] এখন আমরা \(x\)-এর মান বের করি। ধারণা করা যায় \(x = 5\), কারণ: \[ 5^3 - 5 = 125 - 5 = 120 \] তাহলে, সংখ্যাগুলো হলো \(5-1 = 4\), \(5\), এবং \(5+1 = 6\)। এদের যোগফল হবে: \[ 4 + 5 + 6 = 15 \] চূড়ান্ত উত্তর:
পরপর তিনটি সংখ্যার যোগফল হলো \(15\)।
 ৬৫৫
 ৬৭৫
 ৬৮০
 ৬৩০
ব্যাখ্যাঃ মনে করি সংখ্যাটি \(x\)।

প্রশ্নানুসারে, সংখ্যাটি ৫৬০ থেকে যত বড়, অর্থাৎ \(x - ৫৬০\), তা ৮০০ থেকে তত ছোট, অর্থাৎ \(৮০০ - x\)।

সুতরাং, আমরা লিখতে পারি:
$$x - ৫৬০ = ৮০০ - x$$
$$x + x = ৮০০ + ৫৬০$$
$$২x = ১৩৬০$$
$$x = \frac{১৩৬০}{২}$$
$$x = ৬৮০$$

সুতরাং, সংখ্যাটি হলো ৬৮০
 ১২
 ১৪
 ১৬
 ১০
ব্যাখ্যাঃ ১. প্রদত্ত তথ্য বিশ্লেষণ: যদি ২৭, ৪০, এবং ৬৫-কে একটি বৃহত্তম সংখ্যা দ্বারা ভাগ করলে যথাক্রমে ৩, ৪, এবং ৫ ভাগশেষ থাকে, তাহলে আমরা এই সংখ্যাগুলোর থেকে তাদের ভাগশেষ বাদ দিই: \[ 27 - 3 = 24, \, 40 - 4 = 36, \, 65 - 5 = 60 \] ২. এই সংখ্যাগুলোর গ.সা.গু (GCD) নির্ণয়:
এখন ২৪, ৩৬, এবং ৬০-এর গ.সা.গু বের করতে হবে।

৩. গ.সা.গু বের করা:
২৪-এর গুণনীয়ক: \(1, 2, 3, 4, 6, 8, 12, 24\)
৩৬-এর গুণনীয়ক: \(1, 2, 3, 4, 6, 9, 12, 18, 36\)
৬০-এর গুণনীয়ক: \(1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60\)

এই তিনটি সংখ্যার গুণনীয়কগুলোর মধ্যে সর্বাধিক সাধারণ গুণনীয়ক হলো \(12\)।

৪. উত্তর:
তাহলে, বৃহত্তম সংখ্যা হলো \(12\)।

উত্তর: বৃহত্তম সংখ্যা যার দ্বারা ২৭, ৪০, ৬৫-কে ভাগ করলে যথাক্রমে ৩, ৪, ৫ ভাগশেষ থাকবে, তা হলো \(12\)।
 ৩৩
 ২৮
 ২২
 ৪২
ব্যাখ্যাঃ ধরি, দুটি সংখ্যা হলো \(a\) এবং \(b\)। আমাদের দেওয়া আছে:

১. ল.সা.গু (\(LCM\)) = ৮৪
২. গ.সা.গু (\(GCD\)) = ১৪
৩. \(a = \frac{2}{3}b\)।

ল.সা.গু এবং গ.সা.গু সূত্র: \[ LCM \times GCD = a \times b \] এখানে \(a = \frac{2}{3}b\) বসিয়ে পাই: \[ 84 \times 14 = \left(\frac{2}{3}b\right) \times b \] \[ 1176 = \frac{2}{3}b^2 \] এখন \(b^2\)-এর মান নির্ণয় করি: \[ b^2 = \frac{1176 \times 3}{2} = 1764 \] \[ b = \sqrt{1764} = 42 \] তাহলে, \(b = 42\)। এখন \(a = \frac{2}{3}b\): \[ a = \frac{2}{3} \times 42 = 28 \] ছোট সংখ্যাটি:
ছোট সংখ্যাটি হলো \(28\)।


উত্তর: ছোট সংখ্যাটি \(28\)।
 ৪২
 ১৪১
 ৮৭
 ১০৪
ব্যাখ্যাঃ আমরা লঘিষ্ঠ সংখ্যাটি নির্ণয়ের জন্য \(২৪\), \(৩৬\), এবং \(৪৮\)-এর ল.সা.গু (LCM) বের করব।

ধাপ ১: সংখ্যাগুলোর ল.সা.গু বের করা
২৪, ৩৬, এবং ৪৮-এর মৌলিক গুণনীয়ক নির্ণয় করি:
- \(২৪ = 2^3 \times 3\)
- \(৩৬ = 2^2 \times 3^2\)
- \(৪৮ = 2^4 \times 3\)

ল.সা.গু হলো প্রতিটি মৌলিক গুণনীয়কের সর্বাধিক ঘাতের গুণফল: \[ LCM = 2^4 \times 3^2 = 16 \times 9 = 144 \] ধাপ ২: \(৩\) যোগ করলে সংখ্যাটি \(২৪\), \(৩৬\), এবং \(৪৮\) দ্বারা বিভাজ্য হতে হবে
ধরি, লঘিষ্ঠ সংখ্যাটি হলো \(x\)। প্রশ্ন অনুসারে: \[ x + 3 = 144 \] তাহলে: \[ x = 144 - 3 = 141 \] উত্তর: লঘিষ্ঠ সংখ্যাটি হলো \(141\)।
 ১২
 ১১
 ৯
 ১৫
ব্যাখ্যাঃ ধরি, তিনটি পরপর সংখ্যা হলো \(x-1\), \(x\), এবং \(x+1\)।

প্রশ্ন অনুসারে: \[ (x-1) \cdot x \cdot (x+1) = 120 \] এখন গুণফল সরল করি: \[ x(x^2 - 1) = 120 \] \[ x^3 - x = 120 \] এখন \(x\)-এর মান অনুমান করে বের করি। \(x = 5\) বসিয়ে দেখি: \[ 5^3 - 5 = 125 - 5 = 120 \] তাহলে \(x = 5\)।

তিনটি সংখ্যা হলো: \[ x-1 = 4, \, x = 5, \, x+1 = 6 \] এখন তাদের যোগফল: \[ 4 + 5 + 6 = 15 \] উত্তর: তিনটি সংখ্যার যোগফল হলো \(15\)।
 ৭৮৬
 ৭৮০
 ৭৮২
 ৭৯০
ব্যাখ্যাঃ ধরা যাক, সংখ্যাটি হলো \( x \)। প্রশ্ন অনুযায়ী: \[ x - ৭৪২ = ৮৩০ - x \] এখন এই সমীকরণটি সমাধান করি: \[ x + x = ৭৪২ + ৮৩০ \] \[ 2x = ১৫৭২ \] \[ x = \frac{১৫৭২}{২} = ৭৮৬ \] অতএব, সংখ্যাটি হলো ৭৮৬
 ৩১
 ৩৯
 ৭১
 ৪১
ব্যাখ্যাঃ

৩, ৫ ও ৬ এর ল, সা, গু = ৩ x ১ x ৫ x ২ = ৩০

অতএব, নির্ণেয় ক্ষুদ্রতম সংখ্যা = ৩০ + ১ = ৩১

 ৯৭
 ৮৩
 ৮৭
 ৯৩
ব্যাখ্যাঃ ধরি, রহিম ইংরেজিতে পেয়েছে \( x \) নম্বর।
তাহলে গণিতে তিনি পেয়েছেন \( x + ১৪ \) নম্বর।
এখন, মোট নম্বর দেওয়া আছে \( ১৮০ \)।
সুতরাং, সমীকরণ হবে: \[ x + (x + ১৪) = ১৮০ \] \[ ২x + ১৪ = ১৮০ \] \[ ২x = ১৮০ - ১৪ \] \[ ২x = ১৬৬ \] \[ x = \frac{১৬৬}{২} = ৮৩ \] তাহলে, গণিতে রহিম পেয়েছেন: \[ x + ১৪ = ৮৩ + ১৪ = ৯৭ \] উত্তর: গণিতে রহিম পেয়েছে ৯৭ নম্বর
 ০.০২৫
 ০.২৫
 ২৫
 ২.৫
ব্যাখ্যাঃ ধরা যাক,
ভাজ্য = \( x \)
ভাজক = \( 0.5 \)
ভাগফল = \( \frac{x}{0.5} \)

প্রশ্ন অনুসারে,
ভাজক = ভাগফল × ১০
অর্থাৎ, \[ 0.5 = \left(\frac{x}{0.5}\right) \times 10 \] এখন, \( x \) নির্ণয় করি: \[ 0.5 = \frac{10x}{0.5} \] দুইপাশে \( 0.5 \) গুণ করলে: \[ 0.5 \times 0.5 = 10x \] \[ 0.25 = 10x \] এখন, \( x \) বের করি: \[ x = \frac{0.25}{10} = 0.025 \] সুতরাং, ভাজ্য হবে ০.০২৫
 ১০
 ১৬
 ১৪
 ১২
ব্যাখ্যাঃ প্রশ্ন অনুসারে, যদি ২৭, ৪০ ও ৬৫ কে কোনো নির্দিষ্ট সংখ্যা দ্বারা ভাগ করা হয়, তবে যথাক্রমে ৩, ৪ ও ৫ ভাগশেষ থাকবে। অর্থাৎ, প্রতিটি সংখ্যার থেকে ভাগশেষ বিয়োগ করলে যে সংখ্যা পাওয়া যাবে, সেটি সেই সংখ্যার গুণিতক হবে।

প্রথমে, সংশোধিত সংখ্যাগুলি বের করি: \[ 27 - 3 = 24, \quad 40 - 4 = 36, \quad 65 - 5 = 60 \] এখন, ২৪, ৩৬ ও ৬০ এর গসাগু (GCD) নির্ণয় করতে হবে, কারণ সেই গসাগু হলো সেই সর্বাধিক সংখ্যা যা দিয়ে তিনটি সংশোধিত সংখ্যা পুরোপুরি বিভাজ্য।

প্রথমে মৌলিক গুণনীয়ক বিশ্লেষণ করি: \[ 24 = 2^3 \times 3 \] \[ 36 = 2^2 \times 3^2 \] \[ 60 = 2^2 \times 3 \times 5 \] এখন, সকল সংখ্যায় সাধারণ গুণনীয়ক হলো \( 2^2 \times 3 \), যার মান: \[ 4 \times 3 = 12 \] সুতরাং, ১২
 ২১
 ২৩
 ২০
 ২২
ব্যাখ্যাঃ ধরি, শ্রেণির ছাত্র-ছাত্রীর সংখ্যা \( n \)

প্রশ্ন অনুযায়ী, প্রত্যেকে তার সহপাঠীর সংখ্যার সমান টাকা চাঁদা দিয়েছে, অর্থাৎ প্রত্যেকে \( n - 1 \) টাকা দিয়েছে।

তাহলে মোট চাঁদার হিসাব হবে: \[ n \times (n - 1) = 420 \] \[ n^2 - n = 420 \] \[ n^2 - n - 420 = 0 \] \[ n^2 - n - 420 = 0 \] \[ (n - 21)(n + 20) = 0 \] এখানে দুটি সম্ভাব্য মান \( n = 21 \) অথবা \( n = -20 \)।
যেহেতু ছাত্র-ছাত্রীর সংখ্যা ধনাত্মক হবে, তাই \( n = 21 \)।

সুতরাং, শ্রেণিতে মোট ২১ জন ছাত্র-ছাত্রী ছিল