আমাদের স্কুল

সেটিং

বহুনির্বাচনি প্রশ্নের দেখানোর অপশনঃ
শুধুমাত্র উত্তর 2 অপশন
3 অপশন 4 অপশন
বহুনির্বাচনি প্রশ্নের অপশন প্রদর্শনঃ
রো আকারে কলাম আকারে
বহুনির্বাচনি প্রশ্নের উত্তরঃ
লুকান বোল্ড করুন
দেখান দেখান ও বোল্ড করুন
বহুনির্বাচনি প্রশ্নের ব্যাখ্যাঃ
দেখান লুকান নিচে লুকান
থিম নির্বাচন করুনঃ
ফন্ট সাইজঃ
15

প্রশ্নঃ \((x-4)^2+(y+3)^2=100\) বৃত্তের কেন্দ্রীয় স্থানাংক কত?

[ বিসিএস ৩১তম ]

ক. (0, 0)
খ. (4,– 3)
গ. (– 4, 3)
ঘ. (10, 10)
উত্তরঃ (4,– 3)
ব্যাখ্যাঃ
একটি বৃত্তের সাধারণ সমীকরণ হলো $(x-h)^2 + (y-k)^2 = r^2$।
যেখানে, $(h, k)$ হলো বৃত্তের কেন্দ্র এবং $r$ হলো ব্যাসার্ধ।

প্রদত্ত সমীকরণটি হলো $(x-4)^2 + (y+3)^2 = 100$।
এই সমীকরণটিকে আমরা $(x-4)^2 + (y-(-3))^2 = 10^2$ হিসেবে লিখতে পারি।

এই সমীকরণটিকে সাধারণ সমীকরণের সাথে তুলনা করলে আমরা পাই:
$h = 4$
$k = -3$
$r^2 = 100$, সুতরাং $r=10$

সুতরাং, বৃত্তটির কেন্দ্রীয় স্থানাঙ্ক $(h, k) = (4, -3)$ এবং ব্যাসার্ধ $10$।