আমাদের স্কুল

সেটিং

বহুনির্বাচনি প্রশ্নের দেখানোর অপশনঃ
শুধুমাত্র উত্তর 2 অপশন
3 অপশন 4 অপশন
বহুনির্বাচনি প্রশ্নের অপশন প্রদর্শনঃ
রো আকারে কলাম আকারে
বহুনির্বাচনি প্রশ্নের উত্তরঃ
লুকান বোল্ড করুন
দেখান দেখান ও বোল্ড করুন
বহুনির্বাচনি প্রশ্নের ব্যাখ্যাঃ
দেখান লুকান নিচে লুকান
থিম নির্বাচন করুনঃ
ফন্ট সাইজঃ
15

প্রশ্নঃ 13 সে. মি. ব্যাসার্ধ বিশিষ্ট বৃত্তের একটি জ্যা-এর দৈর্ঘ্য 24 সে.মি. হলে কেন্দ্র থেকে উক্ত জ্যা-এর লম্ব দূরত্ব কত সে. মি.?

[ বিসিএস ৩৭তম ]

ক. 3
খ. 4
গ. 5
ঘ. 6
উত্তরঃ 5
ব্যাখ্যাঃ ব্যাসার্ধ বিশিষ্ট বৃত্তের একটি জ্যা-এর দৈর্ঘ্য 24 সে.মি. হলে কেন্দ্র থেকে উক্ত জ্যা-এর লম্ব দূরত্ব নির্ণয় করি।

প্রদত্ত তথ্য:
বৃত্তের ব্যাসার্ধ ($r$) = ১৩ সে.মি.
জ্যা-এর দৈর্ঘ্য ($AB$) = ২৪ সে.মি.

আমরা জানি, বৃত্তের কেন্দ্র থেকে জ্যা-এর উপর অঙ্কিত লম্ব জ্যা-কে সমদ্বিখণ্ডিত করে।
ধরি, কেন্দ্র $O$ এবং জ্যা $AB$। $OC$ হলো কেন্দ্র থেকে জ্যা-এর উপর অঙ্কিত লম্ব।
তাহলে, $AC = CB = \frac{AB}{2} = \frac{২৪}{২} = ১২$ সে.মি.।

এখন, $OAC$ একটি সমকোণী ত্রিভুজ, যেখানে $OA$ হলো অতিভুজ (ব্যাসার্ধ), $AC$ একটি বাহু এবং $OC$ হলো কেন্দ্র থেকে জ্যা-এর লম্ব দূরত্ব।
পিথাগোরাসের উপপাদ্য অনুসারে:
$OA^2 = OC^2 + AC^2$

মানগুলো বসিয়ে পাই:
$১৩^২ = OC^2 + ১২^২$
$১৬৯ = OC^2 + ১৪৪$
$OC^2 = ১৬৯ - ১৪৪$
$OC^2 = ২৫$
$OC = \sqrt{২৫}$
$OC = ৫$ সে.মি.

সুতরাং, কেন্দ্র থেকে উক্ত জ্যা-এর লম্ব দূরত্ব হলো ৫ সে.মি.