আমাদের স্কুল

সেটিং

বহুনির্বাচনি প্রশ্নের দেখানোর অপশনঃ
শুধুমাত্র উত্তর 2 অপশন
3 অপশন 4 অপশন
বহুনির্বাচনি প্রশ্নের অপশন প্রদর্শনঃ
রো আকারে কলাম আকারে
বহুনির্বাচনি প্রশ্নের উত্তরঃ
লুকান বোল্ড করুন
দেখান দেখান ও বোল্ড করুন
বহুনির্বাচনি প্রশ্নের ব্যাখ্যাঃ
দেখান লুকান নিচে লুকান
থিম নির্বাচন করুনঃ
ফন্ট সাইজঃ
15

প্রশ্নঃ $$\frac{1}{\sqrt{2}},1, \sqrt{2}....$$ ধারাটির কোন পদ $$8\sqrt{2}$$ হবে?

[ বিসিএস ৩৯তম ]

ক. ৯তম পদ
খ. ১০ তম পদ
গ. ১১ তম পদ
ঘ. ১২ তম পদ
উত্তরঃ ৯তম পদ
ব্যাখ্যাঃ প্রদত্ত ধারাটি হলো একটি গুণোত্তর ধারা, যেখানে প্রথম পদ ($a$) এবং সাধারণ অনুপাত ($r$) রয়েছে।

প্রথম পদ, $a = \frac{1}{\sqrt{2}}$

সাধারণ অনুপাত, $r = \frac{\text{দ্বিতীয় পদ}}{\text{প্রথম পদ}} = \frac{1}{\frac{1}{\sqrt{2}}} = 1 \times \sqrt{2} = \sqrt{2}$
অথবা, $r = \frac{\text{তৃতীয় পদ}}{\text{দ্বিতীয় পদ}} = \frac{\sqrt{2}}{1} = \sqrt{2}$

আমরা জানি, একটি গুণোত্তর ধারার $n$ তম পদ হলো $a_n = a \cdot r^{n-1}$।
আমরা খুঁজে বের করতে চাই কোন পদ $8\sqrt{2}$ হবে। ধরি, $n$ তম পদটি $8\sqrt{2}$।
সুতরাং, $a_n = 8\sqrt{2}$

এখন সূত্রে মানগুলো বসাই:
$8\sqrt{2} = \frac{1}{\sqrt{2}} \cdot (\sqrt{2})^{n-1}$

উভয় পক্ষকে $\sqrt{2}$ দিয়ে গুণ করি:
$8\sqrt{2} \cdot \sqrt{2} = (\sqrt{2})^{n-1}$
$8 \times 2 = (\sqrt{2})^{n-1}$
$16 = (\sqrt{2})^{n-1}$

এখন $16$ কে $\sqrt{2}$ এর ঘাত হিসেবে প্রকাশ করি:
$16 = 2^4$
$16 = (\sqrt{2}^2)^4$
$16 = (\sqrt{2})^8$

সুতরাং, $(\sqrt{2})^8 = (\sqrt{2})^{n-1}$

যেহেতু ভিত্তি একই, ঘাতগুলো সমান হবে:
$8 = n-1$
$n = 8+1$
$n = 9$

সুতরাং, ধারাটির $9$ম পদ $8\sqrt{2}$ হবে।