আমাদের স্কুল

সেটিং

বহুনির্বাচনি প্রশ্নের দেখানোর অপশনঃ
শুধুমাত্র উত্তর 2 অপশন
3 অপশন 4 অপশন
বহুনির্বাচনি প্রশ্নের অপশন প্রদর্শনঃ
রো আকারে কলাম আকারে
বহুনির্বাচনি প্রশ্নের উত্তরঃ
লুকান বোল্ড করুন
দেখান দেখান ও বোল্ড করুন
বহুনির্বাচনি প্রশ্নের ব্যাখ্যাঃ
দেখান লুকান নিচে লুকান
থিম নির্বাচন করুনঃ
ফন্ট সাইজঃ
15

প্রশ্নঃ কোন ত্রিভুজের বাহুগুলোর অনুপাত নিচের কোনটি হলে একটি সমকোণী ত্রিভুজ অঙ্কন সম্ভব হবে?

[ বিসিএস ৩১তম ]

ক. ৬ : ৫ : ৪
খ. ৩ : ৪ : ৫
গ. ১২ : ৮ : ৪
ঘ. ৬ : ৪ : ৩
উত্তরঃ ৩ : ৪ : ৫
ব্যাখ্যাঃ যে ত্রিভুজের বাহুগুলোর অনুপাত ৩:৪:৫ হবে, সেটি একটি সমকোণী ত্রিভুজ হবে।

সমাধান



একটি ত্রিভুজ সমকোণী হয় যদি তার বাহুগুলো পিথাগোরাসের উপপাদ্য মেনে চলে। পিথাগোরাসের উপপাদ্য অনুসারে, সমকোণী ত্রিভুজের ক্ষেত্রে ক্ষুদ্রতম দুটি বাহুর বর্গের যোগফল বৃহত্তম বাহুর বর্গের সমান হয়। অর্থাৎ, $a^2 + b^2 = c^2$, যেখানে $a$ ও $b$ হলো ক্ষুদ্রতম বাহু এবং $c$ হলো বৃহত্তম বাহু বা অতিভুজ।

এখন, আমরা বিকল্পগুলো যাচাই করে দেখি:

* ক: ৬ : ৫ : ৪
$4^2 + 5^2 = 16 + 25 = 41$
$6^2 = 36$
যেহেতু $41 \ne 36$, এটি সমকোণী ত্রিভুজ নয়।

* খ: ৩ : ৪ : ৫
$3^2 + 4^2 = 9 + 16 = 25$
$5^2 = 25$
যেহেতু $3^2 + 4^2 = 5^2$, তাই এই অনুপাতটি পিথাগোরাসের উপপাদ্য মেনে চলে। এটি একটি সমকোণী ত্রিভুজ

* গ: ১২ : ৮ : ৪
$4^2 + 8^2 = 16 + 64 = 80$
$12^2 = 144$
যেহেতু $80 \ne 144$, এটি সমকোণী ত্রিভুজ নয়।

* ঘ: ৬ : ৪ : ৩
$3^2 + 4^2 = 9 + 16 = 25$
$6^2 = 36$
যেহেতু $25 \ne 36$, এটি সমকোণী ত্রিভুজ নয়।

সুতরাং, শুধুমাত্র ৩:৪:৫ অনুপাতটি পিথাগোরাসের উপপাদ্য মেনে চলায় এটি একটি সমকোণী ত্রিভুজ গঠন করবে।