প্রশ্নঃ Two men, starting at the same point, walk in opposite directions for 4 meters, turn left and walk another 3 meters. What is the distance between them?
[ বিসিএস ২৮তম ]
Related MCQ
কোনো ত্রিভুজের দুইটি কোণের পরিমাণ ২৮° ও ৬২° হলে, তৃতীয় কোণটির পরিমাণ হবে:
১৮০° - (২৮° + ৬২°) = ১৮০° - ৯০° = ৯০°
যেহেতু ত্রিভুজটির একটি কোণ ৯০°, তাই ত্রিভুজটি একটি সমকোণী ত্রিভুজ।
প্রশ্নঃ ABC ত্রিভুজে B কোণের পরিমাণ ৪৮° এবং AB = AC। যদি E এবং F AB এবং AC-কে এমনভাবে ছেদ করে যেন EF || BC হয়, তাহলে ∠A + ∠AFE =?
[ বিসিএস ৪৪তম ]
ধাপে ধাপে বিশ্লেষণ:
প্রদত্ত তথ্য:
- ABC একটি সমদ্বিবাহু ত্রিভুজ, যেখানে AB = AC।
- ∠B = ৪৮°।
- EF || BC, অর্থাৎ EF ও BC সমান্তরাল।
১ম ধাপ: ∠A নির্ণয় করা
সমদ্বিবাহু ত্রিভুজে দুই সমান বাহুর বিপরীত কোণ সমান হয়।
\[
∠B = ∠C = ৪৮°
\]
ত্রিভুজের তিন কোণের যোগফল ১৮০°, তাই—
\[
∠A = 180° - (∠B + ∠C) = 180° - (48° + 48°) = ৮৪°
\]
২য় ধাপ: ∠AFE নির্ণয় করা
EF || BC থাকার কারণে ∠AFE এবং ∠B পরস্পর সমকোণ (Corresponding Angles)।
\[
∠AFE = ∠B = ৪৮°
\]
৩য় ধাপ: ∠A + ∠AFE নির্ণয় করা
\[
∠A + ∠AFE = ৮৪° + ৪৮° = ১৩২°
\]
সঠিক উত্তর: \(132^\circ\)
আমরা জানি, একটি সুষম বহুভুজের প্রতিটি অন্তঃকোণের পরিমাণ $$\frac{(m-2) \times 180^\circ}{m}$$.
প্রশ্নানুসারে, প্রতিটি কোণের পরিমাণ $১৬৮^\circ$.
সুতরাং, $$\frac{(m-2) \times 180^\circ}{m} = 168^\circ$$
উভয় পক্ষকে $m$ দিয়ে গুণ করে পাই,
$$(m-2) \times 180 = 168m$$
$$180m - 360 = 168m$$
$$180m - 168m = 360$$
$$12m = 360$$
$$m = \frac{360}{12}$$
$$m = 30$$
সুতরাং, সুষম বহুভুজটির বাহুসংখ্যা ৩০টি।
উত্তর: ৩০
প্রশ্নঃ △ABC এর ∠A=40° এবং ∠B=80°। ∠C এর সমদ্বিখণ্ডক AB বাহুকে D বিন্দুতে ছেদ করলে ∠CDA=?
[ বিসিএস ৪১তম ]
$$\angle A + \angle B + \angle C = 180^\circ$$$$40^\circ + 80^\circ + \angle C = 180^\circ$$$$120^\circ + \angle C = 180^\circ$$$$\angle C = 180^\circ - 120^\circ$$$$\angle C = 60^\circ$$
CD হল ∠C এর সমদ্বিখণ্ডক। সুতরাং,
$$\angle ACD = \angle BCD = \frac{1}{2} \angle C = \frac{1}{2} \times 60^\circ = 30^\circ$$
এখন, ত্রিভুজ ADC এ, আমরা জানি যে তিনটি কোণের সমষ্টি ১৮০°। সুতরাং,
$$\angle CDA + \angle DAC + \angle ACD = 180^\circ$$$$\angle CDA + 40^\circ + 30^\circ = 180^\circ$$$$\angle CDA + 70^\circ = 180^\circ$$$$\angle CDA = 180^\circ - 70^\circ$$$$\angle CDA = 110^\circ$$
সুতরাং, ∠CDA = ১১০°।
প্রশ্নঃ ৬ সে.মি. ব্যাসার্ধ বিশিষ্ট বৃত্তের অন্তঃস্থ একটি সমবাহু ত্রিভুজের ক্ষেত্রফল-
[ বিসিএস ৪১তম ]
এই অবস্থায়, যদি ত্রিভুজটির বাহু $a$, এবং বৃত্তের ব্যাসার্ধ $R$ হয়, তবে:
$$
a = \sqrt{3} \cdot R
$$
এবং ত্রিভুজটির ক্ষেত্রফল হবে:
$$
\text{Area} = \frac{3\sqrt{3}}{4} R^2
$$
এখানে, $R = 6$ সেমি
$$
\text{Area} = \frac{3\sqrt{3}}{4} \times 6^2 = \frac{3\sqrt{3}}{4} \times 36 = 27\sqrt{3}
$$
প্রশ্নঃ চিত্রে ∠PQR = 55°, ∠LRN = 90° এবং PQ || MR, PQ = PR হলে, ∠NRP এর মান নিচের কোনটি?
[ বিসিএস ৪০তম ]
চিত্রে ∆ PQR একটি সমদ্বিবাহু ত্রিভুজ। এ খন, ∆ PQR- এর যেহেতু PQ= PR, তাই ∠PQR=∠PRQ ∴∠PQR=∠PRQ=55° আবার, ∠LRN=∠NRQ=90° ∴∠NRP=90°-∠PRQ =90-55° =35°
প্রশ্নঃ $$cos(\frac{nπ}{2})$$ অনুক্রমটির চতুর্থ পদ কোনটি?
[ বিসিএস ৪০তম ]
$\mathrm{= cos(\frac {4π}{2}) [∵n=4] =cos2π =cos360° [∵π=180]=1}$

A অবস্থান থেকে দূরত্ব $AC = \sqrt{AB^2 + BC^2}$
$= \sqrt{(১২)^২ + (৫)^২}$
$= \sqrt{১৪৪ + ২৫}$
$= \sqrt{১৬৯}$
$\therefore AC = ১৩$ কি. মি.
পিথাগোরাসের উপপাদ্য অনুসারে, একটি সমকোণী ত্রিভুজের ক্ষেত্রে, অতিভুজের বর্গ (সবচেয়ে বড় বাহু) অন্য দুই বাহুর বর্গের যোগফলের সমান হয়।
এখানে বাহুগুলো হলো 17 সে.মি., 15 সে.মি., এবং 8 সে.মি.।
সবচেয়ে বড় বাহুটি হলো 17 সে.মি.।
আমরা পরীক্ষা করি: $8^2 + 15^2$ এবং $17^2$
$8^2 = 64$
$15^2 = 225$
$17^2 = 289$
এখন যোগফল দেখি:
$8^2 + 15^2 = 64 + 225 = 289$
যেহেতু $8^2 + 15^2 = 17^2$ (অর্থাৎ $289 = 289$), এটি পিথাগোরাসের উপপাদ্যকে সমর্থন করে।
অতএব, 17 সে.মি., 15 সে.মি., 8 সে.মি. বাহু বিশিষ্ট ত্রিভুজটি হবে একটি সমকোণী ত্রিভুজ।
প্রশ্নঃ ∆ABC এ ∠A = 40°, ∠B=70°, হলে ∆ABC কি ধরনের ত্রিভুজ?
[ বিসিএস ৩৬তম ]
ত্রিভুজের তিনটি কোণের সমষ্টি ১৮০°। এখানে, ∠A = 40° ∠B = 70°
তাহলে, ∠C = 180° - (∠A + ∠B) ∠C = 180° - (40° + 70°) ∠C = 180° - 110° ∠C = 70°
এখন, আমরা ত্রিভুজের তিনটি কোণ পেয়েছি: ∠A = 40° ∠B = 70° ∠C = 70°
যেহেতু ত্রিভুজটির দুটি কোণ সমান (∠B = ∠C = 70°), তাই এটি একটি সমদ্বিবাহু ত্রিভুজ (Isosceles Triangle)। (কারণ, যে ত্রিভুজের দুটি কোণ সমান, তার বিপরীত বাহুগুলোও সমান হয়।)
এছাড়াও, যেহেতু এর কোনো কোণই ৯০° এর বেশি নয়, তাই এটি একটি সূক্ষ্মকোণী ত্রিভুজও বটে। তবে কোণের সমান হওয়ার বৈশিষ্ট্যের কারণে এটি সমদ্বিবাহু ত্রিভুজ হিসেবেই পরিচিতি লাভ করে।
প্রশ্নঃ বিষমবাহু ∆ABC এর বাহুগুলির মান এমনভাবে নির্ধারিত যে, AD মধ্যমা দ্বারা গঠিত ∆ABD এর ক্ষেত্রফল $$x$$ বর্গমিটার। ∆ABC এর ক্ষেত্রফল কত?
[ বিসিএস ৩৪তম ]
ত্রিভুজের মধ্যমা (median) ত্রিভুজটিকে দুটি সমান ক্ষেত্রফলবিশিষ্ট ত্রিভুজে বিভক্ত করে। এখানে, $AD$ হলো $\triangle ABC$-এর একটি মধ্যমা। সুতরাং, $\triangle ABD$ এবং $\triangle ACD$ এর ক্ষেত্রফল সমান।
$\text{Area}(\triangle ABD) = \text{Area}(\triangle ACD) = x$ বর্গমিটার
$\triangle ABC$-এর মোট ক্ষেত্রফল = $\text{Area}(\triangle ABD) + \text{Area}(\triangle ACD)$
$= x + x$
$= 2x$ বর্গমিটার।
প্রশ্নঃ একটি সমকোণী ত্রিভুজের লম্ব ভূমি অপেক্ষা ২ সে.মি. ছোট; কিন্তু অতিভুজ ভূমি অপেক্ষা ২ সে. মি. বড়। অতিভুজের দৈর্ঘ্য কত?
[ বিসিএস ৩৩তম ]
প্রশ্ন অনুযায়ী,
লম্ব = $(x-২)$ সে.মি.
অতিভুজ = $(x+২)$ সে.মি.
পিথাগোরাসের সূত্র অনুযায়ী,
$(লম্ব)^২ + (ভূমি)^২ = (অতিভুজ)^২$
$\implies (x-২)^২ + x^২ = (x+২)^২$
$\implies x^২ - ৪x + ৪ + x^২ = x^২ + ৪x + ৪$
$\implies ২x^২ - ৪x + ৪ = x^২ + ৪x + ৪$
$\implies ২x^২ - x^২ - ৪x - ৪x + ৪ - ৪ = ০$
$\implies x^২ - ৮x = ০$
$\implies x(x-৮) = ০$
এখানে, $x = ০$ হতে পারে না, কারণ ভূমির দৈর্ঘ্য শূন্য হতে পারে না।
তাহলে, $x-৮ = ০$
$\implies x = ৮$
সুতরাং, ভূমির দৈর্ঘ্য হলো ৮ সে.মি.।
এখন অতিভুজের দৈর্ঘ্য:
অতিভুজ = $(x+২)$ সে.মি.
$= (৮+২)$ সে.মি.
$= ১০$ সে.মি.
অপশন (ক), (গ) ও (ঘ) এর বিদ্যমান শর্তগুলো দুটি ত্রিভুজ পরস্পর সর্বসম হওয়ার জন্য যথেষ্ট। কিন্তু অপশন (খ)-এ বিদ্যমান শর্তটি দুটি ত্রিভুজ পরস্পর সর্বসম হওয়ার জন্য যথেষ্ট নয়। ৩ কোণ সমান হলেও ২টি ত্রিভুজ সর্বসম নাও হতে পারে।
প্রশ্নঃ কোন ত্রিভুজের বাহুগুলোর অনুপাত নিচের কোনটি হলে একটি সমকোণী ত্রিভুজ অঙ্কন সম্ভব হবে?
[ বিসিএস ৩১তম ]
সমাধান
একটি ত্রিভুজ সমকোণী হয় যদি তার বাহুগুলো পিথাগোরাসের উপপাদ্য মেনে চলে। পিথাগোরাসের উপপাদ্য অনুসারে, সমকোণী ত্রিভুজের ক্ষেত্রে ক্ষুদ্রতম দুটি বাহুর বর্গের যোগফল বৃহত্তম বাহুর বর্গের সমান হয়। অর্থাৎ, $a^2 + b^2 = c^2$, যেখানে $a$ ও $b$ হলো ক্ষুদ্রতম বাহু এবং $c$ হলো বৃহত্তম বাহু বা অতিভুজ।
এখন, আমরা বিকল্পগুলো যাচাই করে দেখি:
* ক: ৬ : ৫ : ৪
$4^2 + 5^2 = 16 + 25 = 41$
$6^2 = 36$
যেহেতু $41 \ne 36$, এটি সমকোণী ত্রিভুজ নয়।
* খ: ৩ : ৪ : ৫
$3^2 + 4^2 = 9 + 16 = 25$
$5^2 = 25$
যেহেতু $3^2 + 4^2 = 5^2$, তাই এই অনুপাতটি পিথাগোরাসের উপপাদ্য মেনে চলে। এটি একটি সমকোণী ত্রিভুজ।
* গ: ১২ : ৮ : ৪
$4^2 + 8^2 = 16 + 64 = 80$
$12^2 = 144$
যেহেতু $80 \ne 144$, এটি সমকোণী ত্রিভুজ নয়।
* ঘ: ৬ : ৪ : ৩
$3^2 + 4^2 = 9 + 16 = 25$
$6^2 = 36$
যেহেতু $25 \ne 36$, এটি সমকোণী ত্রিভুজ নয়।
সুতরাং, শুধুমাত্র ৩:৪:৫ অনুপাতটি পিথাগোরাসের উপপাদ্য মেনে চলায় এটি একটি সমকোণী ত্রিভুজ গঠন করবে।
দুটি সরলরেখার ঢালের পরমমান সমান এবং তৃতীয় সরলরেখাটি কোনো একটি অক্ষের সমান্তরাল হলে, উক্ত রেখা দুইটি তৃতীয় রেখা দ্বারা সমানভাবে বিভক্ত হবে। এই কারণে (y=3x+2) এবং (y=-3x+2) রেখা দুইটির ঢাল যথাক্রমে 3 এবং -3, যাদের পরমমান সমান। সুতরাং, রেখা দুইটি তৃতীয় রেখা দ্বারা সমান অংশে বিভক্ত হবে
এখানে তৃতীয় রেখাটি হলো (y=-2)। তৃতীয় রেখাটি x অক্ষের সমান্তরাল। সুতরাং, (y=3x+2) এবং (y=-3x+2) সরলরেখা দুটি (y=-2) রেখা দ্বারা সমানভাবে বিভক্ত হবে। অতএব, (y=3x+2), (y=-3x+2) এবং (y=-2) দ্বারা গঠিত জ্যামিতিক চিত্রটি একটি সমদ্বিবাহু ত্রিভুজ হবে।
যদি তৃতীয় রেখাটি (x=0) বা (y=2) হয়, অর্থাৎ মূলবিন্দু দিয়ে যায়, তাহলে কোনো ত্রিভুজ তৈরি হবে না।
অতএব, উত্তর হলো: (y=3x+2), (y=-3x+2) এবং (y=-2) দ্বারা গঠিত জ্যামিতিক চিত্রটি একটি সমদ্বিবাহু ত্রিভুজ।
প্রশ্নঃ একটি ত্রিভুজের তিনটি বাহুর দৈর্ঘ্য ৫, ৬ ও ৭ মিটার। নিকটতম বর্গমিটারের ত্রিভুজটির ক্ষেত্রফল কত?
[ বিসিএস ২৪তম ]
প্রশ্নঃ একটি সমদ্বিবাহু ত্রিভূজের ভূমি ১৬ মি. এবং অপর দুটি বাহুর প্রতিটি ১০ মি. হলে ত্রিভুজটির ক্ষেত্রফল কত?
[ বিসিএস ২০তম ]
- ভূমি = ১৬ মি.
- অপর দুটি বাহু = ১০ মি.
ক্ষেত্রফল বের করার জন্য প্রথমে ত্রিভুজটির উচ্চতা নির্ণয় করতে হবে।
সমদ্বিবাহু ত্রিভুজের উচ্চতা বের করার সূত্র: \[ h = \sqrt{a^2 - \left(\frac{b}{2}\right)^2} \] এখানে,
\(a = ১০\) মি. (বাহু)
\(b = ১৬\) মি. (ভূমি)
\[ h = \sqrt{10^2 - \left(\frac{16}{2}\right)^2} \] \[ = \sqrt{100 - 64} \] \[ = \sqrt{36} \] \[ = 6 \text{ মি.} \] এখন, ত্রিভুজের ক্ষেত্রফল: \[ \text{ক্ষেত্রফল} = \frac{1}{2} \times b \times h \] \[ = \frac{1}{2} \times 16 \times 6 \] \[ = 8 \times 6 \] \[ = 48 \text{ বর্গ মি.} \] তাহলে, ত্রিভুজটির ক্ষেত্রফল হবে ৪৮ বর্গ মিটার।
প্রশ্নঃ দুটি ত্রিভুজের মধ্যে কোন উপাদানগুলো সমান হওয়া সত্ত্বেও ত্রিভুজ দুটি সর্বসম নাও হতে পারে?
[ বিসিএস ১৬তম ]
দুটি ত্রিভুজ সর্বসম হতে নাও পারে এমন উপাদানগুলোর মধ্যে হলো:
1. দুটি কোণ এবং একটি বাহু: দুই ত্রিভুজের দুটি কোণ এবং একটি বাহু সমান হলেও, যদি সমান বাহু দুটি সমান কোণের মাঝখানে না থাকে, তবে ত্রিভুজ দুটি সর্বসম নাও হতে পারে। (এটি "এএসএ" নিয়মে পতিত হয় না)
2. দুটি বাহু এবং একটি কোণ: দুই ত্রিভুজের দুটি বাহু এবং একটি কোণ সমান হলেও, যদি সমান কোণ দুটি সমান বাহুর মাঝে না থাকে, তবে ত্রিভুজ দুটি সর্বসম নাও হতে পারে। (এটি "এসএএস" নিয়মে পতিত হয় না)
এই দুটি ক্ষেত্রে ত্রিভুজ সমান হওয়ার জন্য শুধু উল্লেখিত উপাদানগুলো যথেষ্ট নয়; সেইসব উপাদানগুলি উপযুক্ত ক্রমে না থাকলে ত্রিভুজ দুটি সর্বসম হতে নাও পারে।
1. \( x + y - 1 = 0 \)
2. \( x - y + 1 = 0 \)
3. \( y + 3 = 0 \)
এই সরলরেখাগুলির ছেদবিন্দুগুলি নির্ণয় করে ত্রিভুজের শীর্ষবিন্দুগুলি বের করব।
### ধাপ ১: ছেদবিন্দু নির্ণয়
1. প্রথম ও দ্বিতীয় সরলরেখার ছেদবিন্দু: \[ \begin{cases} x + y = 1 \\ x - y = -1 \end{cases} \] সমাধান করলে: \[ x = 0, \quad y = 1 \] ছেদবিন্দু: \( (0, 1) \)
2. প্রথম ও তৃতীয় সরলরেখার ছেদবিন্দু: \[ \begin{cases} x + y = 1 \\ y = -3 \end{cases} \] সমাধান করলে: \[ x = 4, \quad y = -3 \] ছেদবিন্দু: \( (4, -3) \)
3. দ্বিতীয় ও তৃতীয় সরলরেখার ছেদবিন্দু: \[ \begin{cases} x - y = -1 \\ y = -3 \end{cases} \] সমাধান করলে: \[ x = -4, \quad y = -3 \] ছেদবিন্দু: \( (-4, -3) \)
### ধাপ ২: ত্রিভুজের শীর্ষবিন্দু
ত্রিভুজের শীর্ষবিন্দুগুলি হলো: - \( A(0, 1) \)
- \( B(4, -3) \)
- \( C(-4, -3) \)
### ধাপ ৩: ত্রিভুজের ধরণ নির্ণয়
1. বাহুর দৈর্ঘ্য:
- \( AB = \sqrt{(4-0)^2 + (-3-1)^2} = \sqrt{16 + 16} = \sqrt{32} \)
- \( AC = \sqrt{(-4-0)^2 + (-3-1)^2} = \sqrt{16 + 16} = \sqrt{32} \)
- \( BC = \sqrt{(-4-4)^2 + (-3-(-3))^2} = \sqrt{64 + 0} = 8 \)
2. ত্রিভুজের ধরণ:
- যেহেতু \( AB = AC \) এবং \( BC \) ভিন্ন, তাই ত্রিভুজটি সমদ্বিবাহু।
### চূড়ান্ত উত্তর: ত্রিভুজটি সমদ্বিবাহু।
ধাপ ১: সমস্যা বিশ্লেষণ
- মইয়ের দৈর্ঘ্য (\( L \)) = ৫০ মিটার
- দেওয়ালের উচ্চতা (\( h \)) = ৪০ মিটার
- মইয়ের অপর প্রান্ত হতে দেওয়ালের দূরত্ব (\( d \)) = ?
ধাপ ২: পিথাগোরাসের উপপাদ্য প্রয়োগ
পিথাগোরাসের উপপাদ্য অনুযায়ী: \[ L^2 = h^2 + d^2 \] মান বসিয়ে: \[ 50^2 = 40^2 + d^2 \] \[ 2500 = 1600 + d^2 \] \[ d^2 = 2500 - 1600 \] \[ d^2 = 900 \] \[ d = \sqrt{900} \] \[ d = 30 \] চূড়ান্ত উত্তর:
মইয়ের অপর প্রান্ত হতে দেওয়ালের দূরত্ব ৩০ মিটার।
প্রশ্নঃ সমকোণী ত্রিভুজের সমকোণ সংলগ্ন বাহুদ্বয় যথাক্রমে ৩ ও ৪ সেন্টিমিটার হলে এর অতিভুজের মান কত?
[ বিসিএস ১৪তম ]
পিথাগোরাসের উপপাদ্য অনুসারে: \[ h^2 = a^2 + b^2 \] এখানে, \( a = ৩ \) সেন্টিমিটার \( b = ৪ \) সেন্টিমিটার \( h \) = অতিভুজ তাহলে, \[ h^2 = ৩^2 + ৪^2 \] \[ h^2 = ৯ + ১৬ \] \[ h^2 = ২৫ \] \[ h = \sqrt{২৫} \] \[ h = ৫ \] সেন্টিমিটার অতএব, অতিভুজের মান ৫ সেন্টিমিটার।
তাহলে, \[ \text{ক্ষেত্রফল} = \frac{\sqrt{3}}{4} \times ১৬^2 \] \[ = \frac{\sqrt{3}}{4} \times ২৫৬ \] \[ = ৬৪\sqrt{3} \text{ বর্গ মিটার} \] অতএব, ত্রিভুজটির ক্ষেত্রফল \( ৬৪\sqrt{3} \) বর্গ মিটার।
ত্রিভুজের একটি কোণ যদি অপর দুটি কোণের সমষ্টির সমান হয়, তাহলে সেই ত্রিভুজটি অবশ্যই একটি সমকোণী ত্রিভুজ (Right-angled triangle) হবে।
কারণ, ত্রিভুজের একটি কোণ যদি ৯০° হয়, তাহলে বাকি দুটি কোণ মিলে ৯০° হবে। উদাহরণস্বরূপ, ত্রিভুজের একটি কোণ ৯০° হলে, বাকি দুটি কোণ মিলে ৯০° হবে এবং সেই দুটি কোণের যোগফল ঐ ত্রিভুজের সমকোণী কোণের সমান হবে।
প্রশ্নঃ একটি ত্রিভুজাকৃতি মাঠের বাহুগুলোর দৈর্ঘ্য যথাক্রমে 20m,21m এবং 29m হলে এর ক্ষেত্রফল কত?
[ বিসিএস ৩১তম ]
ত্রিভুজটির বাহুগুলোর দৈর্ঘ্য হলো ২০ মি., ২১ মি. এবং ২৯ মি.।
প্রথমে অর্ধ-পরিসীমা ($s$) নির্ণয় করি:
$s = \frac{20 + 21 + 29}{2}$
$s = \frac{70}{2}$
$s = 35$ মি.
এখন, হেরনের সূত্র ব্যবহার করে ক্ষেত্রফল নির্ণয় করি:
ক্ষেত্রফল $= \sqrt{s(s-a)(s-b)(s-c)}$
$= \sqrt{35(35-20)(35-21)(35-29)}$
$= \sqrt{35 \times 15 \times 14 \times 6}$
$= \sqrt{(5 \times 7) \times (3 \times 5) \times (2 \times 7) \times (2 \times 3)}$
$= \sqrt{2^2 \times 3^2 \times 5^2 \times 7^2}$
$= 2 \times 3 \times 5 \times 7$
$= 210$ বর্গ মি.
সুতরাং, ত্রিভুজটির ক্ষেত্রফল ২১০ বর্গ মিটার।
ত্রিভুজের তিন কোণের সমষ্টি দুই সমকোণ।
∴ ত্রিভুজটির তৃতীয় কোণের পরিমাণ = ১৮০° - (৫৫° + ৩৫°) = ৯০°
∴ ত্রিভুজটি সমকোণী।
ধরি, সমবাহু ত্রিভুজের বাহুর দৈর্ঘ্য \(a\) মিটার।
তাহলে, এর ক্ষেত্রফল হবে $\frac{\sqrt{3}}{4} a^2$ বর্গমিটার।
বাহুর দৈর্ঘ্য ২ মিটার বাড়ালে নতুন দৈর্ঘ্য হবে \((a+2)\) মিটার।
নতুন ক্ষেত্রফল হবে $\frac{\sqrt{3}}{4} (a+2)^2$ বর্গমিটার।
প্রশ্নমতে, নতুন ক্ষেত্রফল থেকে পুরাতন ক্ষেত্রফল বিয়োগ করলে $3\sqrt{3}$ হয়।
$\frac{\sqrt{3}}{4} (a+2)^2 - \frac{\sqrt{3}}{4} a^2 = 3\sqrt{3}$
উভয় পক্ষ থেকে $\frac{\sqrt{3}}{4}$ কমন নিয়ে পাই:
$\frac{\sqrt{3}}{4} [(a+2)^2 - a^2] = 3\sqrt{3}$
এখন উভয় পক্ষকে $\frac{4}{\sqrt{3}}$ দ্বারা গুণ করে পাই:
$(a+2)^2 - a^2 = 12$
$a^2+4a+4-a^2 = 12$
$4a+4 = 12$
$4a = 12-4$
$4a = 8$
$a = 2$
সুতরাং, ত্রিভুজটির বাহুর দৈর্ঘ্য ২ মিটার।
প্রশ্নঃ সমকোণী ত্রিভুজের বাহুগুলির অনুপাত কোনটি?
[ প্রা.বি.স.শি. 27-06-2019 ]
ক) ১৩ : ১২ : ৫
ধরি, বাহুগুলি: ১৩, ১২, ৫
অতিভুজ (সবচেয়ে বড় বাহু) = ১৩
পরীক্ষা: \( ১৩^২ = ১২^২ + ৫^২ \)
\[ ১৬৯ = ১৪৪ + ২৫ \] \[ ১৬৯ = ১৬৯ \] খ) ৬ : ৪ : ৩
বাহুগুলি: ৬, ৪, ৩
অতিভুজ = ৬
পরীক্ষা: \( ৬^২ = ৪^২ + ৩^২ \) \[ ৩৬ = ১৬ + ৯ \] \[ ৩৬ \neq ২৫ \] গ) ৬ : ৫ : ৩
বাহুগুলি: ৬, ৫, ৩
অতিভুজ = ৬
পরীক্ষা: \( ৬^২ = ৫^২ + ৩^২ \)
\[ ৩৬ = ২৫ + ৯ \] \[ ৩৬ \neq ৩৪ \] ঘ) ১২ : ৮ : ৪
বাহুগুলি: ১২, ৮, ৪
অতিভুজ = ১২
পরীক্ষা: \( ১২^২ = ৮^২ + ৪^২ \)
\[ ১৪৪ = ৬৪ + ১৬ \] \[ ১৪৪ \neq ৮০ \] সিদ্ধান্ত:
শুধুমাত্র ক) ১৩ : ১২ : ৫ পিথাগোরিয়ান উপপাদ্য সিদ্ধ করে।
প্রশ্নঃ স্থুলকোণী ত্রিভুজের স্থুলকোণের সংখ্যা -
[ প্রা.বি.স.শি. 27-06-2019 ]
স্থুলকোণী ত্রিভুজে একটি মাত্র স্থুলকোণ থাকতে পারে।
একটি ত্রিভুজের তিনটি কোণের সমষ্টি সর্বদা ১৮০° হয়। যদি একটি কোণ ৯০°-এর বেশি হয় (অর্থাৎ স্থুলকোণ হয়), তাহলে বাকি দুইটি কোণের যোগফল ৯০°-এর কম হতে হবে।
অতএব, একটি স্থুলকোণী ত্রিভুজে সর্বোচ্চ ১টি স্থুলকোণ থাকতে পারে।
প্রশ্নঃ ত্রিভুজের একটি বাহুকে উভয় দিকে বর্ধিত করায় উৎপন্ন বহি:স্থ কোণের পরস্পর সমান হলে ত্রিভুজটি -
[ প্রা.বি.স.শি. 26-06-2019 ]
যদি কোনো ত্রিভুজের একটি বাহুকে উভয় দিকে বর্ধিত করা হয় এবং এর ফলে যে দুটি বহিঃস্থ কোণ তৈরি হয়, তারা পরস্পর সমান হয়, তবে ত্রিভুজটি সমদ্বিবাহু ত্রিভুজ হবে।
প্রশ্নঃ এক সমকোণী ত্রিভুজের সমকোণ সংলগ্ন বাহুদ্বয় ৩ ও ৪ সে.মি. হলে এর অতিভুজের মান কত?
[ প্রা.বি.স.শি. 26-06-2019 ]
প্রশ্নঃ কোন ৩ টি বাহু দিয়ে ত্রিভুজ গঠন করা যাবে না?
[ প্রা.বি.স.শি. 31-05-2019 ]
আমরা প্রতিটি বিকল্প যাচাই করি:
* কঃ ২, ৪, ৫
* ২ + ৪ = ৬ > ৫ (সঠিক)
* ২ + ৫ = ৭ > ৪ (সঠিক)
* ৪ + ৫ = ৯ > ২ (সঠিক)
* এই বাহুগুলো দিয়ে ত্রিভুজ গঠন করা যাবে।
* খঃ ৪, ৫, ৬
* ৪ + ৫ = ৯ > ৬ (সঠিক)
* ৪ + ৬ = ১০ > ৫ (সঠিক)
* ৫ + ৬ = ১১ > ৪ (সঠিক)
* এই বাহুগুলো দিয়ে ত্রিভুজ গঠন করা যাবে।
* গঃ ২, ৪, ৭
* ২ + ৪ = ৬, যা ৭ এর চেয়ে ছোট নয় ($6 \ngtr 7$) (ভুল)
* এখানেই শর্ত ভঙ্গ হয়েছে।
* এই বাহুগুলো দিয়ে ত্রিভুজ গঠন করা যাবে না।
* ঘঃ ৩, ৪, ৬
* ৩ + ৪ = ৭ > ৬ (সঠিক)
* ৩ + ৬ = ৯ > ৪ (সঠিক)
* ৪ + ৬ = ১০ > ৩ (সঠিক)
* এই বাহুগুলো দিয়ে ত্রিভুজ গঠন করা যাবে।
সুতরাং, ২, ৪, ৭ বাহুগুলো দিয়ে ত্রিভুজ গঠন করা যাবে না।
প্রশ্নঃ একটি সমকোণী ত্রিভুজের ভূমির দৈর্ঘ্য লম্ব অপেক্ষা ১ মিটার কম এবং লম্ব অপেক্ষা অতিভূজের দৈর্ঘ্য ১ মিটার বেশী হলে ত্রিভূজের অতিভূজের দৈর্ঘ্য কত?
[ প্রা.বি.স.শি. 31-05-2019 ]
প্রশ্নানুযায়ী:
ভূমির দৈর্ঘ্য লম্ব অপেক্ষা ১ মিটার কম।
সুতরাং, ভূমির দৈর্ঘ্য = $(x - 1)$ মিটার।
অতিভূজের দৈর্ঘ্য লম্ব অপেক্ষা ১ মিটার বেশি।
সুতরাং, অতিভূজের দৈর্ঘ্য = $(x + 1)$ মিটার।
আমরা জানি, সমকোণী ত্রিভুজে পিথাগোরাসের উপপাদ্য অনুসারে:
(লম্ব)$^২$ + (ভূমি)$^২$ = (অতিভুজ)$^২$
মান বসিয়ে পাই:
$x^২ + (x - 1)^২ = (x + 1)^২$
বাম পক্ষ:
$x^২ + (x^২ - 2 \cdot x \cdot 1 + 1^২)$
$x^২ + x^২ - 2x + 1$
$2x^২ - 2x + 1$
ডান পক্ষ:
$(x^২ + 2 \cdot x \cdot 1 + 1^২)$
$x^২ + 2x + 1$
এখন সমীকরণটি সমাধান করি:
$2x^২ - 2x + 1 = x^২ + 2x + 1$
$2x^২ - x^২ - 2x - 2x + 1 - 1 = 0$
$x^২ - 4x = 0$
$x(x - 4) = 0$
এখানে দুটি সমাধান সম্ভব:
১. $x = 0$
২. $x - 4 = 0 \Rightarrow x = 4$
দৈর্ঘ্য কখনও শূন্য হতে পারে না, তাই $x = 0$ গ্রহণযোগ্য নয়।
সুতরাং, $x = 4$ মিটার।
লম্বের দৈর্ঘ্য = ৪ মিটার।
ভূমির দৈর্ঘ্য = $x - 1 = 4 - 1 = 3$ মিটার।
অতিভূজের দৈর্ঘ্য = $x + 1 = 4 + 1 = 5$ মিটার।
সুতরাং, ত্রিভুজটির অতিভূজের দৈর্ঘ্য হলো ৫ মিটার।
উত্তর: ত্রিভুজটির অতিভূজের দৈর্ঘ্য ৫ মিটার।
প্রশ্নঃ একটি ত্রিভুজের তিনটি কোণের অনুপাত ১ : ২ : ৩ । ত্রিভুজটি হবে -
[ প্রা.বি.স.শি. 31-05-2019 ]
মনে করি, কোণ তিনটি হলো $x$, $2x$ এবং $3x$।
আমরা জানি, ত্রিভুজের তিনটি কোণের সমষ্টি $180^\circ$।
সুতরাং, $x + 2x + 3x = 180^\circ$
$6x = 180^\circ$
$x = \frac{180^\circ}{6}$
$x = 30^\circ$
এখন, কোণগুলির পরিমাপ নির্ণয় করি:
প্রথম কোণ = $x = 30^\circ$
দ্বিতীয় কোণ = $2x = 2 \times 30^\circ = 60^\circ$
তৃতীয় কোণ = $3x = 3 \times 30^\circ = 90^\circ$
যেহেতু ত্রিভুজটির একটি কোণ $90^\circ$, তাই এটি একটি সমকোণী ত্রিভুজ।
উত্তর: ত্রিভুজটি হবে সমকোণী ত্রিভুজ।
প্রশ্নঃ একটি রেখাংশের উপর অঙ্কিত বর্গক্ষেত্র ঐ রেখাংশের এক তৃতীয়াংশের উপর অঙ্কিত বর্গক্ষেত্রের কত গুণ?
[ 18th ntrca (স্কুল সমপর্যায়-২) (15-03-2024) ]
রেখাংশের উপর অঙ্কিত বর্গক্ষেত্রের ক্ষেত্রফল = $L \times L = L^2$।
ঐ রেখাংশের এক তৃতীয়াংশ হল $\frac{L}{3}$।
এক তৃতীয়াংশের উপর অঙ্কিত বর্গক্ষেত্রের ক্ষেত্রফল = $(\frac{L}{3}) \times (\frac{L}{3}) = \frac{L^2}{9}$।
এখন, একটি রেখাংশের উপর অঙ্কিত বর্গক্ষেত্র ঐ রেখাংশের এক তৃতীয়াংশের উপর অঙ্কিত বর্গক্ষেত্রের কত গুণ তা নির্ণয় করতে হবে।
অর্থাৎ, $\frac{L^2}{\frac{L^2}{9}}$
$= L^2 \times \frac{9}{L^2}$
$= 9$
সুতরাং, একটি রেখাংশের উপর অঙ্কিত বর্গক্ষেত্র ঐ রেখাংশের এক তৃতীয়াংশের উপর অঙ্কিত বর্গক্ষেত্রের 9 গুণ।
প্রশ্নঃ একটি সমকোণী ত্রিভুজের সূক্ষ্মকোণ দুইটি 30° ও 60°; ত্রিভুজটির বাহু তিনটির অনুপাত কত?
[ 18th ntrca (স্কুল পর্যায়) (15-03-2024) ]
প্রমাণ:
ধরি, ABC একটি সমকোণী ত্রিভুজ, যেখানে $\angle B = 90^\circ$, $\angle A = 30^\circ$ এবং $\angle C = 60^\circ$।
sin $30^\circ = \frac{\text{বিপরীত বাহু}}{\text{অতিভুজ}} = \frac{BC}{AC} = \frac{1}{2}$
cos $30^\circ = \frac{\text{সংলগ্ন বাহু}}{\text{অতিভুজ}} = \frac{AB}{AC} = \frac{\sqrt{3}}{2}$
এখন, $\frac{BC}{AC} = \frac{1}{2}$ থেকে পাই $BC : AC = 1 : 2$।
এবং $\frac{AB}{AC} = \frac{\sqrt{3}}{2}$ থেকে পাই $AB : AC = \sqrt{3} : 2$।
সুতরাং, বাহু তিনটির অনুপাত $BC : AB : AC = 1 : \sqrt{3} : 2$।
অর্থাৎ, $30^\circ$ কোণের বিপরীত বাহু : $60^\circ$ কোণের বিপরীত বাহু : অতিভুজ = $1 : \sqrt{3} : 2$।
প্রশ্নঃ 1 সে.মি., 2 সে.মি., 3 সে.মি. ও 4 সে.মি. দৈর্ঘ্যবিশিষ্ট চারটি রেখাংশ দ্বারা কয়টি ত্রিভুজ অংকন করা যাবে?
[ 18th ntrca (স্কুল পর্যায়) (15-03-2024) ]
ত্রিভুজ গঠনের শর্ত হলো, যেকোনো দুটি বাহুর দৈর্ঘ্যের যোগফল তৃতীয় বাহুর দৈর্ঘ্য অপেক্ষা বৃহত্তর হতে হবে।
প্রদত্ত চারটি রেখাংশের দৈর্ঘ্য হলো: 1 সেমি, 2 সেমি, 3 সেমি এবং 4 সেমি।
এই চারটি রেখাংশ থেকে তিনটি করে নিয়ে সম্ভাব্য ত্রিভুজগুলো পরীক্ষা করি:
১. 1 সেমি, 2 সেমি, 3 সেমি: 1 + 2 = 3 যেহেতু দুটি বাহুর যোগফল তৃতীয় বাহুর সমান, তাই এটি দিয়ে ত্রিভুজ গঠন করা যাবে না।
২. 1 সেমি, 2 সেমি, 4 সেমি: 1 + 2 = 3 < 4 যেহেতু দুটি বাহুর যোগফল তৃতীয় বাহু অপেক্ষা ছোট, তাই এটি দিয়ে ত্রিভুজ গঠন করা যাবে না।
৩. 1 সেমি, 3 সেমি, 4 সেমি: 1 + 3 = 4 যেহেতু দুটি বাহুর যোগফল তৃতীয় বাহুর সমান, তাই এটি দিয়ে ত্রিভুজ গঠন করা যাবে না।
৪. 2 সেমি, 3 সেমি, 4 সেমি: 2 + 3 = 5 > 4 (শর্ত পূরণ করে) 3 + 4 = 7 > 2 (শর্ত পূরণ করে) 2 + 4 = 6 > 3 (শর্ত পূরণ করে) যেহেতু এই তিনটি বাহু দিয়ে ত্রিভুজ গঠনের শর্ত পূরণ হয়, তাই এটি দিয়ে একটি ত্রিভুজ গঠন করা যাবে।
সুতরাং, এই চারটি রেখাংশ দ্বারা কেবল 1 টি ত্রিভুজ অংকন করা যাবে।