ক. ২২৫ বর্গমিটার
খ. ১৪৪ বর্গমিটার
গ. ১৬৯ বর্গমিটার
ঘ. ১৯৬ বর্গমিটার
উত্তরঃ ১৯৬ বর্গমিটার
ব্যাখ্যাঃ ধরি, আয়তাকার কক্ষের দৈর্ঘ্য ক মিটার এবং প্রস্থ খ মিটার।
প্রথম শর্তানুযায়ী,
ক্ষেত্রফল = দৈর্ঘ্য × প্রস্থ
ক × খ = ১৯২ বর্গমিটার ... (১)
দ্বিতীয় শর্তানুযায়ী,
(ক - ৪) × (খ + ৪) = ১৯২ বর্গমিটার
বা, কখ + ৪ক - ৪খ - ১৬ = ১৯২
সমীকরণ (১) থেকে কখ এর মান বসিয়ে পাই,
১৯২ + ৪ক - ৪খ - ১৬ = ১৯২
বা, ৪ক - ৪খ = ১৬
বা, ৪(ক - খ) = ১৬
বা, ক - খ = $\frac{১৬}{৪}$
$\therefore$ ক - খ = ৪
বা, ক = খ + ৪ ... (২)
এখন, সমীকরণ (১) এ ক এর মান বসিয়ে পাই,
(খ + ৪) × খ = ১৯২
বা, খ² + ৪খ = ১৯২
বা, খ² + ৪খ - ১৯২ = ০
বা, খ² + ১৬খ - ১২খ - ১৯২ = ০
বা, খ(খ + ১৬) - ১২(খ + ১৬) = ০
বা, (খ + ১৬)(খ - ১২) = ০
যেহেতু প্রস্থের মান ঋণাত্মক হতে পারে না, তাই খ = ১২।
প্রস্থ (খ) = ১২ মিটার
সমীকরণ (২) এ খ এর মান বসিয়ে পাই,
দৈর্ঘ্য (ক) = ১২ + ৪ = ১৬ মিটার।
এখন, আয়তাকার কক্ষটির পরিসীমা নির্ণয় করি:
পরিসীমা = ২ × (দৈর্ঘ্য + প্রস্থ)
= ২ × (১৬ + ১২)
= ২ × ২৮
= ৫৬ মিটার।
প্রশ্নে বলা হয়েছে, বর্গাকার কক্ষের পরিসীমা আয়তাকার কক্ষের পরিসীমার সমান।
সুতরাং, বর্গাকার কক্ষের পরিসীমা = ৫৬ মিটার।
বর্গাকার কক্ষের এক বাহুর দৈর্ঘ্য = $\frac{পরিসীমা}{৪} = \frac{৫৬}{৪}$ = ১৪ মিটার।
বর্গাকার কক্ষের ক্ষেত্রফল = (এক বাহুর দৈর্ঘ্য)²
= (১৪)²
= ১৪ × ১৪
= ১৯৬ বর্গমিটার।
সুতরাং, বর্গাকার কক্ষের ক্ষেত্রফল হবে ১৯৬ বর্গমিটার।
প্রথম শর্তানুযায়ী,
ক্ষেত্রফল = দৈর্ঘ্য × প্রস্থ
ক × খ = ১৯২ বর্গমিটার ... (১)
দ্বিতীয় শর্তানুযায়ী,
(ক - ৪) × (খ + ৪) = ১৯২ বর্গমিটার
বা, কখ + ৪ক - ৪খ - ১৬ = ১৯২
সমীকরণ (১) থেকে কখ এর মান বসিয়ে পাই,
১৯২ + ৪ক - ৪খ - ১৬ = ১৯২
বা, ৪ক - ৪খ = ১৬
বা, ৪(ক - খ) = ১৬
বা, ক - খ = $\frac{১৬}{৪}$
$\therefore$ ক - খ = ৪
বা, ক = খ + ৪ ... (২)
এখন, সমীকরণ (১) এ ক এর মান বসিয়ে পাই,
(খ + ৪) × খ = ১৯২
বা, খ² + ৪খ = ১৯২
বা, খ² + ৪খ - ১৯২ = ০
বা, খ² + ১৬খ - ১২খ - ১৯২ = ০
বা, খ(খ + ১৬) - ১২(খ + ১৬) = ০
বা, (খ + ১৬)(খ - ১২) = ০
যেহেতু প্রস্থের মান ঋণাত্মক হতে পারে না, তাই খ = ১২।
প্রস্থ (খ) = ১২ মিটার
সমীকরণ (২) এ খ এর মান বসিয়ে পাই,
দৈর্ঘ্য (ক) = ১২ + ৪ = ১৬ মিটার।
এখন, আয়তাকার কক্ষটির পরিসীমা নির্ণয় করি:
পরিসীমা = ২ × (দৈর্ঘ্য + প্রস্থ)
= ২ × (১৬ + ১২)
= ২ × ২৮
= ৫৬ মিটার।
প্রশ্নে বলা হয়েছে, বর্গাকার কক্ষের পরিসীমা আয়তাকার কক্ষের পরিসীমার সমান।
সুতরাং, বর্গাকার কক্ষের পরিসীমা = ৫৬ মিটার।
বর্গাকার কক্ষের এক বাহুর দৈর্ঘ্য = $\frac{পরিসীমা}{৪} = \frac{৫৬}{৪}$ = ১৪ মিটার।
বর্গাকার কক্ষের ক্ষেত্রফল = (এক বাহুর দৈর্ঘ্য)²
= (১৪)²
= ১৪ × ১৪
= ১৯৬ বর্গমিটার।
সুতরাং, বর্গাকার কক্ষের ক্ষেত্রফল হবে ১৯৬ বর্গমিটার।
প্রশ্নঃ একটি আয়তাকার ঘরের প্রস্থ তার দৈর্ঘ্যের \(\frac{২}{৩}\) অংশ। ঘরটির পরিসীমা ৪০ মিটার হলে তার ক্ষেত্রফল কত?
[ বিসিএস ৩৩তম ]
ক. ৬০ বর্গমিটার
খ. ৯৬ বর্গমিটার
গ. ৭২ বর্গমিটার
ঘ. ৬৪ বর্গমিটার
উত্তরঃ ৯৬ বর্গমিটার
ব্যাখ্যাঃ ধরি, আয়তাকার ঘরের দৈর্ঘ্য \(l\) এবং প্রস্থ \(b\)।
প্রদত্ত তথ্য অনুযায়ী,
\[ b = \frac{2}{3}l \] এবং পরিসীমা \(P = 40\)।
পরিসীমার সূত্র হলো: \[ P = 2(l + b) \] এখন মানগুলো বসাই: \[ 40 = 2\left(l + \frac{2}{3}l\right) \] \[ 40 = 2\left(\frac{3l + 2l}{3}\right) \] \[ 40 = 2 \cdot \frac{5l}{3} \] \[ 40 = \frac{10l}{3} \] \[ l = \frac{40 \cdot 3}{10} = 12 \] এখন, প্রস্থ বের করি: \[ b = \frac{2}{3}l = \frac{2}{3} \cdot 12 = 8 \] অতএব, ক্ষেত্রফল: \[ \text{ক্ষেত্রফল} = l \cdot b = 12 \cdot 8 = 96 \, \text{মিটার}^2 \] ঘরটির ক্ষেত্রফল \(96 \, \text{মিটার}^2\)।
প্রদত্ত তথ্য অনুযায়ী,
\[ b = \frac{2}{3}l \] এবং পরিসীমা \(P = 40\)।
পরিসীমার সূত্র হলো: \[ P = 2(l + b) \] এখন মানগুলো বসাই: \[ 40 = 2\left(l + \frac{2}{3}l\right) \] \[ 40 = 2\left(\frac{3l + 2l}{3}\right) \] \[ 40 = 2 \cdot \frac{5l}{3} \] \[ 40 = \frac{10l}{3} \] \[ l = \frac{40 \cdot 3}{10} = 12 \] এখন, প্রস্থ বের করি: \[ b = \frac{2}{3}l = \frac{2}{3} \cdot 12 = 8 \] অতএব, ক্ষেত্রফল: \[ \text{ক্ষেত্রফল} = l \cdot b = 12 \cdot 8 = 96 \, \text{মিটার}^2 \] ঘরটির ক্ষেত্রফল \(96 \, \text{মিটার}^2\)।
প্রশ্নঃ একটি বর্গক্ষেত্রের বাহুর দৈর্ঘ্য ৪ সে.মি.। ঐ বর্গক্ষেত্রের কর্ণের উপর অঙ্কিত বর্গক্ষেত্রের ক্ষেত্রফল কত বর্গ সে.মি.?
[ 18th ntrca (স্কুল পর্যায়) (15-03-2024) ]
ক. 128
খ. 130
গ. 132
ঘ. 140
উত্তরঃ 128
ব্যাখ্যাঃ প্রশ্নে দেওয়া আছে,
বর্গক্ষেত্রের বাহুর দৈর্ঘ্য = 8 সেমি।
বর্গক্ষেত্রের কর্ণের দৈর্ঘ্য = বাহুর দৈর্ঘ্য $\times \sqrt{2}$
কর্ণের দৈর্ঘ্য = $8\sqrt{2}$ সেমি।
এখন, এই কর্ণের উপর অঙ্কিত বর্গক্ষেত্রের বাহুর দৈর্ঘ্য হবে $8\sqrt{2}$ সেমি।
ঐ বর্গক্ষেত্রের ক্ষেত্রফল = (বাহুর দৈর্ঘ্য)$^2$
= $(8\sqrt{2})^2$
= $8^2 \times (\sqrt{2})^2$
= $64 \times 2$
= 128 বর্গ সেমি।
সুতরাং, কর্ণের উপর অঙ্কিত বর্গক্ষেত্রের ক্ষেত্রফল 128 বর্গ সেমি।
বর্গক্ষেত্রের বাহুর দৈর্ঘ্য = 8 সেমি।
বর্গক্ষেত্রের কর্ণের দৈর্ঘ্য = বাহুর দৈর্ঘ্য $\times \sqrt{2}$
কর্ণের দৈর্ঘ্য = $8\sqrt{2}$ সেমি।
এখন, এই কর্ণের উপর অঙ্কিত বর্গক্ষেত্রের বাহুর দৈর্ঘ্য হবে $8\sqrt{2}$ সেমি।
ঐ বর্গক্ষেত্রের ক্ষেত্রফল = (বাহুর দৈর্ঘ্য)$^2$
= $(8\sqrt{2})^2$
= $8^2 \times (\sqrt{2})^2$
= $64 \times 2$
= 128 বর্গ সেমি।
সুতরাং, কর্ণের উপর অঙ্কিত বর্গক্ষেত্রের ক্ষেত্রফল 128 বর্গ সেমি।