আমাদের স্কুল

সেটিং

বহুনির্বাচনি প্রশ্নের দেখানোর অপশনঃ
শুধুমাত্র উত্তর 2 অপশন
3 অপশন 4 অপশন
বহুনির্বাচনি প্রশ্নের অপশন প্রদর্শনঃ
রো আকারে কলাম আকারে
বহুনির্বাচনি প্রশ্নের উত্তরঃ
লুকান বোল্ড করুন
দেখান দেখান ও বোল্ড করুন
বহুনির্বাচনি প্রশ্নের ব্যাখ্যাঃ
দেখান লুকান নিচে লুকান
থিম নির্বাচন করুনঃ
ফন্ট সাইজঃ
15

 32
 8
 3
 $$\sqrt{8}$$
ব্যাখ্যাঃ আমরা প্রদত্ত লগারিদমিক সমীকরণ সমাধান করব: \[ \log_{\sqrt{8}}{x} = 3\frac{1}{3} \] 1. ভগ্নাংশকে দশমিক বা ভগ্নাংশ আকারে প্রকাশ করি: \[ 3\frac{1}{3} = \frac{10}{3} \] 2. লগারিদমিক সংজ্ঞা অনুযায়ী: \[ x = (\sqrt{8})^{\frac{10}{3}} \] 3. \(\sqrt{8}\) লিখি \(\sqrt{8} = 8^{\frac{1}{2}}\): \[ x = (8^{\frac{1}{2}})^{\frac{10}{3}} \] 4. সূচকের গুণ প্রয়োগ করি: \[ x = 8^{\left(\frac{1}{2} \times \frac{10}{3}\right)} \] \[ x = 8^{\frac{10}{6}} = 8^{\frac{5}{3}} \] 5. \(8 = 2^3\) হিসাবে প্রকাশ করি: \[ x = (2^3)^{\frac{5}{3}} \] 6. সূচকের গুণ প্রয়োগ করি: \[ x = 2^{\left(3 \times \frac{5}{3}\right)} \] \[ x = 2^5 \] \[ x = 32 \] উত্তর: \[ \boxed{32} \]
 a + b = 1
 a – b = 1
 a = b
 a² – b² = 1
ব্যাখ্যাঃ আমরা প্রদত্ত সমীকরণটি ব্যবহার করে সমাধান করবো:

\[
\log\left(\frac{a}{b}\right) + \log\left(\frac{b}{a}\right) = \log(a + b)
\]

ধাপে ধাপে সমাধান:


১. Logarithmic সূত্র অনুযায়ী,
\[
\log x + \log y = \log (x \cdot y)
\]
তাহলে বামপক্ষকে পরিবর্তন করি:

\[
\log\left(\frac{a}{b} \cdot \frac{b}{a}\right) = \log(a + b)
\]

২. সরলীকরণ:
\[
\log(1) = \log(a + b)
\]

৩. যেহেতু \(\log 1 = 0\) এবং লগarithemic ফাংশন এক-একভাবে কাজ করে, তাই পাই:

\[
a + b = 1
\]

সঠিক উত্তর: কঃ a + b = 1
 2
 3
 4
 6
ব্যাখ্যাঃ আমরা প্রদত্ত সমীকরণটি সরলীকরণ করবো:

\[
2^{x + 7} = 4^{x + 2}
\]

ধাপে ধাপে বিশ্লেষণ:
আমরা জানি, \( 4 = 2^2 \), তাই \(4^{x + 2}\)-কে \(2\) এর ঘাত রূপে প্রকাশ করা যায়:

\[
2^{x + 7} = (2^2)^{x + 2}
\]

এখন, ঘাতের নিয়ম অনুসারে:

\[
(2^2)^{x + 2} = 2^{2(x + 2)}
\]

তাহলে, সমীকরণ দাঁড়ায়:

\[
2^{x + 7} = 2^{2x + 4}
\]


\[
x + 7 = 2x + 4
\]

\[
x + 7 - 4 = 2x
\]

\[
x + 3 = 2x
\]

\[
3 = 2x - x
\]

\[
x = 3
\]

সঠিক উত্তর: \( x = 3 \)
 3
 4
 5
 6
ব্যাখ্যাঃ
$$\frac{1}{2} \times 2^{x-3} + 1 = 5$$
$$\frac{1}{2} \times 2^{x-3} = 5 - 1$$
$$\frac{1}{2} \times 2^{x-3} = 4$$
$$2^{x-3} = 8$$
$$2^{x-3} = 2^3$$
$$x - 3 = 3$$
$$x = 3 + 3$$
$$x = 6$$
সুতরাং, \(x\) এর মান হলো 6।

৫. $$2log{105}+log{1036}-log{109=?}$$

[ বিসিএস ৪৪তম ]

 2
 100
 37
 4.6
ব্যাখ্যাঃ $$
\begin{aligned}
&= 2\log_{10}5 + \log_{10}36 - \log_{10}9 \\
&= \log_{10}(5^2) + \log_{10}36 - \log_{10}9 \\
&= \log_{10}25 + \log_{10}36 - \log_{10}9 \\
&= \log_{10}(25 \times 36) - \log_{10}9 \\
&= \log_{10}(900) - \log_{10}9 \\
&= \log_{10}\left(\frac{900}{9}\right) \\
&= \log_{10}(100) \\
&= \log_{10}(10^2) \\
&= 2\log_{10}(10) \\
&= 2 \times 1 \\
&= 2
\end{aligned}
$$
 0.1
 0.01
 $$\frac{1}{10000}$$
 0.001
ব্যাখ্যাঃ আমরা এখানে \( x \) এর মান নির্ণয় করতে যাচ্ছি।

ধাপে ধাপে সমাধান:


প্রদত্ত সমীকরণ:
\[
\log{10x} = -1
\]

১ম ধাপ: লগারিদমের সংজ্ঞা প্রয়োগ করা


লগারিদম সংজ্ঞা অনুযায়ী—
\[
10^{\log{10x}} = 10^{-1}
\]

যেহেতু \( \log{10x} \) কেবলমাত্র \( x \) কে প্রকাশ করে, তাই—
\[
x = 10^{-1}
\]

২য় ধাপ: সূচকের হিসাব করা


\[
x = \frac{1}{10}
\]

সুতরাং, $$x = \frac{1}{10}$$ বা \( 0.1 \)



 8
 16
 4
 64
ব্যাখ্যাঃ প্রথমে, $$\sqrt[4]{x^3}=2$$ সমীকরণটি সমাধান করা যাক।

$$\sqrt[4]{x^3} = x^{\frac{3}{4}}$$

$$x^{\frac{3}{4}} = 2$$

$$(x^{\frac{3}{4}})^{\frac{4}{3}} = 2^{\frac{4}{3}}$$

$$x = 2^{\frac{4}{3}}$$

এখন, আমাদের \(x^{\frac{3}{2}}\) এর মান নির্ণয় করতে হবে। আমরা $x$ এর মানটি এখানে বসাব:

$$x^{\frac{3}{2}} = (2^{\frac{4}{3}})^{\frac{3}{2}}$$

$$(a^m)^n = a^{m \times n}$$

$$x^{\frac{3}{2}} = 2^{\frac{4}{3} \times \frac{3}{2}}$$

$$x^{\frac{3}{2}} = 2^{\frac{4 \times 3}{3 \times 2}}$$

$$x^{\frac{3}{2}} = 2^{\frac{12}{6}}$$

$$x^{\frac{3}{2}} = 2^2$$

$$x^{\frac{3}{2}} = 4$$

অতএব, যদি $$\sqrt[4]{x^3}=2$$হয়, তাহলে$$x^{\frac{3}{2}}=4$$.

উত্তর: $4$
 8
 2
 15
 10
ব্যাখ্যাঃ আমরা প্রদত্ত প্রকাশটি সরলীকরণ করতে পারি:

\[
2^{\log_{2}{3} + \log_{2}{5}}
\]

ধাপে ধাপে সমাধান:



ধাপ ১: লগারিদমের যোগের সূত্র প্রয়োগ
\[
\log_{b}{x} + \log_{b}{y} = \log_{b}{(x \times y)}
\]

\[
\log_{2}{3} + \log_{2}{5} = \log_{2}{(3 \times 5)} = \log_{2}{15}
\]

ধাপ ২: সূচকের লগারিদম সূত্র প্রয়োগ
\[
a^{\log_{a}{x}} = x
\]

এটি প্রয়োগ করলে,
\[
2^{\log_{2}{15}} = 15
\]

চূড়ান্ত উত্তর:


\[
\mathbf{15}
\]

৯. $$4^x + 4^{1 - x} = 4$$ হলে, $$x =$$ কত?

[ বিসিএস ৪৩তম ]

 $$\frac{1}{4}$$
 $$\frac{1}{3}$$
 $$\frac{1}{2}$$
 $$1$$
ব্যাখ্যাঃ \[
4^x + 4^{1 - x} = 4
\]

আমরা \( 4^{1-x} \) কে \( \frac{4}{4^x} \) হিসেবে লিখতে পারি:
\[
4^x + \frac{4}{4^x} = 4
\]

ধরুন, \( y = 4^x \), তাহলে সমীকরণটি হয়:
\[
y + \frac{4}{y} = 4
\]
\[
y^2 + 4 = 4y
\]
\[
y^2 - 4y + 4 = 0
\]
\[
(y - 2)^2 = 0
\]

\[
y - 2 = 0
\]

\[
y = 2
\]
\[
4^x = 2
\]

\[
x = \log_4{2}
\]

আমরা জানি, \( \log_4{2} = \frac{1}{2} \)

চূড়ান্ত উত্তর:


\(
\mathbf{x = \frac{1}{2}}
\)

 3
 2
 $$\frac{1}{3}$$
 $$-\frac{1}{3}$$
ব্যাখ্যাঃ আমরা লগারিদমিক ফর্মকে সূচকীয় (exponential) ফর্মে রূপান্তর করি:
\[
x^{-2} = \frac{1}{9}
\]
\[
\frac{1}{x^2} = \frac{1}{9}
\]
\[
x^2 = 9
\]
\[
x = \pm3
\]

ভিত্তির শর্ত পরীক্ষা


লগারিদমের ভিত্তি (\(x\)) ধনাত্মক হতে হয়, তাই \(x = -3\) গ্রহণযোগ্য নয়
তাই \(x = 3\) হল সঠিক উত্তর।
 $$4x$$
 $$6x$$
 4
 8
ব্যাখ্যাঃ \[
x = - \left(2^{\frac{1}{3}} + 2^{\frac{2}{3}}\right)
\]
\[
x^3 = - \left( (2^{\frac{1}{3}})^3 + (2^{\frac{2}{3}})^3 + 3 \cdot 2^{\frac{1}{3}} \cdot 2^{\frac{2}{3}} \cdot (2^{\frac{1}{3}} + 2^{\frac{2}{3}}) \right)
\]
\[
x^3 = - (2 + 4 + 3 \cdot 2 \cdot (-x))
\]
\[
x^3 = -(6 - 6x)
\]
\[
x^3 = -6 + 6x
\]
\[
x^3 + 6 = 6x
\]
 $$-3$$
 $$-2$$
 $$-1$$
 $$-\frac{1}{2}$$
ব্যাখ্যাঃ \[
5^x + 8.5^x + 16.5^x = 1
\]
\[
5^x + (2^{3} \cdot 5^x) + (2^{4} \cdot 5^x) = 1
\]
\[
5^x \left(1 + 8 + 16 \right) = 1
\]
\[
5^x \times 25 = 1
\]
\[
5^x = \frac{1}{25}
\]
\[
5^x = 5^{-2}
\]
সুতরাং, \( x = -2 \)

১৩. $$log_{2}{~log_{\sqrt{e}}{~e^2}}=?$$

[ বিসিএস ৪১তম ]

 $$-2$$
 $$-1$$
 $$1$$
 $$2$$
ব্যাখ্যাঃ ধাপ ১: ভিতরের লগারিদমটা আগে সমাধান করি:
$$
\log_{\sqrt{e}}{e^2}
$$
এখানে $\sqrt{e} = e^{1/2}$, তাই আমরা পরিবর্তন করি:
$$
\log_{e^{1/2}}{e^2}
$$
লগারিদমের সূত্র অনুযায়ী:
$$
\log_{a}{b} = \frac{\log{b}}{\log{a}}
$$
$$
= \frac{\log_e{e^2}}{\log_e{e^{1/2}}} = \frac{2}{1/2} = 4
$$
ধাপ ২: এখন আসে বাইরের লগারিদম:
$$
\log_{2}{4} = 2
$$

উত্তর: ঘঃ 2

 $$\frac{3}{2}$$
 $$\frac{4}{9}$$
 $$\frac{9}{4}$$
 $$\frac{2}{3}$$
ব্যাখ্যাঃ

১৫. কোন শর্তে $$log_{a}{1}=0?$$

[ বিসিএস ৪০তম ]

 $$a > 0, a ≠ 1$$
 $$a ≠ 0 , a > 1$$
 $$a > 0 , a = 1$$
 $$a ≠ 1, a < 0$$
ব্যাখ্যাঃ লগারিদমের মৌলিক সূত্র অনুযায়ী,

$$\log_a 1 = 0 \quad \text{কারণ} \quad a^0 = 1$$

এটি তখনই বৈধ যখন বেস $a$ এর মান হয় ধনাত্মক এবং ১ এর সমান নয়, অর্থাৎ:

$a > 0 \quad \text{এবং} \quad a \neq 1$
 $$3$$
 $$-3$$
 $$7$$
 $$9$$
ব্যাখ্যাঃ প্রদত্ত সমীকরণটি হলো: $125(\sqrt{5})^{2x} = 1$

প্রথমে, $125$ কে $5$ এর ঘাত হিসেবে লিখি: $125 = 5^3$
এবং $\sqrt{5}$ কে $5$ এর ঘাত হিসেবে লিখি: $\sqrt{5} = 5^{\frac{1}{2}}$

এখন সমীকরণে মানগুলো বসাই:
$5^3 \cdot (5^{\frac{1}{2}})^{2x} = 1$
$5^3 \cdot 5^{\frac{1}{2} \cdot 2x} = 1$
$5^3 \cdot 5^x = 1$

ঘাতের নিয়ম অনুযায়ী, $a^m \cdot a^n = a^{m+n}$, তাই:
$5^{3+x} = 1$

যেহেতু $1$ কে যেকোনো সংখ্যার $0$ ঘাত হিসেবে লেখা যায় ($a^0 = 1$), আমরা $1$ কে $5^0$ হিসেবে লিখব:
$5^{3+x} = 5^0$

এখন, যেহেতু উভয় পাশের ভিত্তি একই (5), তাই ঘাতগুলো অবশ্যই সমান হবে:
$3+x = 0$
$x = -3$

সুতরাং, $x$ এর মান হলো $-3$।
 2
 $$\sqrt{2}$$
 $$2\sqrt{2}$$
 4
ব্যাখ্যাঃ দেওয়া আছে, $\log_{x}{(\frac{1}{8})} = -2$।

লগারিদমের সংজ্ঞা অনুযায়ী, যদি $\log_{b}{a} = c$ হয়, তাহলে $b^c = a$।

এই সংজ্ঞাটি প্রয়োগ করে আমরা পাই:
$x^{-2} = \frac{1}{8}$

এখন, ঋণাত্মক ঘাতকে ধনাত্মক ঘাতকে পরিবর্তন করি:
$\frac{1}{x^2} = \frac{1}{8}$

উভয় পক্ষকে উল্টিয়ে পাই:
$x^2 = 8$

$x$ এর মান বের করার জন্য উভয় পক্ষের বর্গমূল করি:
$x = \sqrt{8}$
$x = \sqrt{4 \times 2}$
$x = 2\sqrt{2}$

যেহেতু ভিত্তি $x$ অবশ্যই ধনাত্মক হবে (লগারিদমের শর্ত অনুযায়ী), তাই আমরা শুধু ধনাত্মক বর্গমূলটি নিব।

সুতরাং, $x = 2\sqrt{2}$।

১৮. $$2^x + 2^{1-x} =3$$ হলে, $$x =$$ কত?

[ বিসিএস ৩৮তম ]

 (1, 2)
 (0, 2)
 (1, 3)
 (0, 1)
ব্যাখ্যাঃ দেওয়া আছে, $2^x + 2^{1-x} = 3$।

আমরা $2^{1-x}$ কে এভাবে লিখতে পারি: $2^{1-x} = \frac{2^1}{2^x} = \frac{2}{2^x}$।

এখন সমীকরণটিকে পুনরায় লিখি:
$2^x + \frac{2}{2^x} = 3$

ধরি, $y = 2^x$। তাহলে সমীকরণটি দাঁড়ায়:
$y + \frac{2}{y} = 3$

এখন উভয় পক্ষকে $y$ দ্বারা গুণ করি (যেহেতু $y = 2^x$, $y$ এর মান কখনো ০ হতে পারে না):
$y^2 + 2 = 3y$

সমীকরণটিকে একটি দ্বিঘাত সমীকরণের আকারে সাজিয়ে লিখি:
$y^2 - 3y + 2 = 0$

এই দ্বিঘাত সমীকরণটিকে উৎপাদকে বিশ্লেষণ করি:
$y^2 - 2y - y + 2 = 0$
$y(y - 2) - 1(y - 2) = 0$
$(y - 1)(y - 2) = 0$

সুতরাং, $y - 1 = 0$ অথবা $y - 2 = 0$।

কেস ১: $y - 1 = 0$
$y = 1$
আমরা ধরেছিলাম $y = 2^x$।
$2^x = 1$
আমরা জানি $2^0 = 1$।
সুতরাং, $x = 0$।

কেস ২: $y - 2 = 0$
$y = 2$
আমরা ধরেছিলাম $y = 2^x$।
$2^x = 2$
আমরা জানি $2^1 = 2$।
সুতরাং, $x = 1$।

অতএব, $x$ এর মান হলো $0$ অথবা $1$।
 $$\frac{4}{9}$$
 $$\frac{9}{4}$$
 $$\sqrt{\frac{3}{2}}$$
 $$\sqrt{\frac{2}{3}}$$
ব্যাখ্যাঃ প্রদত্ত সমীকরণ: $\log_{x}{(\frac{3}{2})}=-\frac{1}{2}$

লগারিদমের সংজ্ঞা অনুযায়ী, যদি $\log_{b}{a} = c$ হয়, তাহলে $b^c = a$ লেখা যায়।

এই সংজ্ঞা ব্যবহার করে, আমরা প্রদত্ত সমীকরণকে এভাবে লিখতে পারি:
$x^{-\frac{1}{2}} = \frac{3}{2}$

আমরা জানি যে $a^{-n} = \frac{1}{a^n}$। সুতরাং,
$\frac{1}{x^{\frac{1}{2}}} = \frac{3}{2}$

আমরা আরও জানি যে $a^{\frac{1}{2}} = \sqrt{a}$। সুতরাং,
$\frac{1}{\sqrt{x}} = \frac{3}{2}$

এখন $x$-এর মান বের করার জন্য উভয় পক্ষকে উল্টে দিই:
$\sqrt{x} = \frac{2}{3}$

এবার $x$-এর মান পেতে উভয় পক্ষকে বর্গ করি:
$(\sqrt{x})^2 = \left(\frac{2}{3}\right)^2$
$x = \frac{2^2}{3^2}$
$x = \frac{4}{9}$

সুতরাং, $x$-এর মান $\frac{4}{9}$

২০. $$log_{\sqrt{3}}~{81}$$ কত?

[ বিসিএস ৩৬তম ]

 4
 $$27\sqrt{3}$$
 8
 $$\frac{1}{8}$$
ব্যাখ্যাঃ আমরা $log_{\sqrt{3}}~{81}$-এর মান নির্ণয় করব।

ধরি, $log_{\sqrt{3}}~{81} = y$

লগারিদমের সংজ্ঞা অনুযায়ী, এর অর্থ হলো:
$(\sqrt{3})^y = 81$

এখন, উভয় পক্ষকে $3$-এর ঘাত (power) হিসেবে প্রকাশ করি:
$\sqrt{3} = 3^{1/2}$
$81 = 3^4$

তাহলে, সমীকরণটি দাঁড়ায়:
$(3^{1/2})^y = 3^4$
$3^{(1/2)y} = 3^4$

যেহেতু ভিত্তি (base) উভয় পাশে একই ($3$), তাই ঘাতগুলো অবশ্যই সমান হবে:
$\frac{1}{2}y = 4$

$y = 4 \times 2$
$y = 8$

সুতরাং, $log_{\sqrt{3}}~{81}$ এর মান হলো
 0
 1
 $$-1$$
 4
ব্যাখ্যাঃ সমীকরণটি নিচে সমাধান করা হলো:
$$(25)^{2x+3} = 5^{3x+6}$$

আমরা জানি যে $25 = 5^2$। এই মানটি সমীকরণে বসাই:
$$(5^2)^{2x+3} = 5^{3x+6}$$

সূচকের নিয়ম অনুযায়ী, $(a^m)^n = a^{mn}$, তাই আমরা বাম পাশের ঘাতগুলো গুণ করব:
$$5^{2(2x+3)} = 5^{3x+6}$$
$$5^{4x+6} = 5^{3x+6}$$

যেহেতু উভয় পাশের ভিত্তি (base) একই ($5$), তাই ঘাতগুলোও সমান হতে হবে:
$$4x+6 = 3x+6$$

এখন $x$-এর মান নির্ণয় করার জন্য সমীকরণটি সমাধান করি:
$4x - 3x = 6 - 6$
$$x = 0$$

সুতরাং, $x$-এর মান হলো

২২. $$\sqrt{১৫.৬০২৫}=?$$

[ বিসিএস ৩৬তম ]

 ৩.৮৫
 ৩.৭৫
 ৩.৯৫
 ৩.৬৫
ব্যাখ্যাঃ আমরা প্রথমে দশমিক বাদ দিয়ে সংখ্যাটির বর্গমূল নির্ণয় করি, অর্থাৎ $\sqrt{১৫৬০২৫}$।
যেহেতু সংখ্যাটির শেষ অঙ্ক ৫, তাই এর বর্গমূলের শেষ অঙ্ক ৫ হবে।
আমরা জানি $395^2 = 156025$।

এখন, আসল সংখ্যাটিতে দশমিক বিন্দুর পর ৪টি অঙ্ক আছে। তাই বর্গমূলে দশমিক বিন্দুর পর $৪ \div ২ = ২$টি অঙ্ক থাকবে।

সুতরাং, $\sqrt{১৫.৬০২৫} = ৩.৯৫$

অতএব, $\sqrt{১৫.৬০২৫} = ৩.৯৫$।

২৩. $$\sqrt{-8}×\sqrt{-2}=$$ কত?

[ বিসিএস ৪১তম ]

 4
 $$4i$$
 $$-4$$
 $$-4i$$
ব্যাখ্যাঃ আমরা জানি, $\sqrt{-1} = i$ (কাল্পনিক একক)।

সুতরাং, আমরা লিখতে পারি:
$$\sqrt{-8} = \sqrt{8 \times (-1)} = \sqrt{8} \times \sqrt{-1} = \sqrt{4 \times 2} \times i = 2\sqrt{2}i$$এবং,$$\sqrt{-2} = \sqrt{2 \times (-1)} = \sqrt{2} \times \sqrt{-1} = \sqrt{2}i$$

এখন, এদের গুণফল হবে:
$$\sqrt{-8} \times \sqrt{-2} = (2\sqrt{2}i) \times (\sqrt{2}i)$$$$= 2 \times (\sqrt{2} \times \sqrt{2}) \times (i \times i)$$$$= 2 \times 2 \times i^2$$
আমরা জানি, $i^2 = -1$.

সুতরাং,
$$= 4 \times (-1)$$
$$= -4$$

অতএব, $$\sqrt{-8} \times \sqrt{-2} = -4$$
 100
 $$\frac{1}{10}$$
 10
 $$\frac{1}{100}$$
ব্যাখ্যাঃ দেওয়া আছে সমীকরণটি:
$x^{-3} - 0.001 = 0$

আমরা $x^{-3}$ কে $\frac{1}{x^3}$ লিখতে পারি।
এবং $0.001$ কে $\frac{1}{1000}$ লিখতে পারি।

তাহলে সমীকরণটি দাঁড়ায়:
$\frac{1}{x^3} - \frac{1}{1000} = 0$
$\frac{1}{x^3} = \frac{1}{1000}$

উভয় পক্ষের হর তুলনা করে পাই:
$x^3 = 1000$

এখন $x$ এর মান বের করি:
$x = \sqrt[3]{1000}$
$x = 10$

প্রশ্নে $x^2$ এর মান চাওয়া হয়েছে।
$x^2 = (10)^2$
$x^2 = 100$

সুতরাং, $x^2$ এর মান ১০০।

২৫. $$log_{a}{(\frac{1}{9})}$$ এর মান-

[ বিসিএস ৩৫তম ]

 2
 -2
 3
 -3
ব্যাখ্যাঃ আমরা জানি, $\frac{1}{9} = 9^{-1}$।
তাহলে, এক্সপ্রেশনটি দাঁড়ায়:
$log_a{(9^{-1})}$

লগারিদমের একটি ধর্ম হলো $log_b{(M^P)} = P \cdot log_b{(M)}$।
এই ধর্মটি প্রয়োগ করলে পাই:
$log_a{(9^{-1})} = -1 \cdot log_a{(9)}$
বা, $$-log_a{(9)}$$

যদি $a = 9$ হয়, তবে:
$log_9{(\frac{1}{9})} = log_9{(9^{-1})} = -1 \cdot log_9{(9)}$
আমরা জানি $log_b{(b)} = 1$, তাই $log_9{(9)} = 1$।
সুতরাং, $-1 \times 1 = -1$।

যদি $a = 3$ হয়, তবে:
$log_3{(\frac{1}{9})} = log_3{(3^{-2})} = -2 \cdot log_3{(3)}$
সুতরাং, $-2 \times 1 = -2$।

সাধারণভাবে, $log_a{(\frac{1}{9})}$ এর মান হলো $-log_a{(9)}$।

একটি নির্দিষ্ট সংখ্যাসূচক মানের জন্য, $a$ এর সুনির্দিষ্ট মান প্রয়োজন।
 1
 2
 4
 5
ব্যাখ্যাঃ দেওয়া আছে:
$log_a{x} = 1$
$log_a{y} = 2$
$log_a{z} = 3$

আমাদেরকে $log_a{(\frac{x^3y^2}{z})}$ এর মান নির্ণয় করতে হবে।

লগারিদমের নিয়ম অনুযায়ী:
১. $log_b{(\frac{M}{N})} = log_b{M} - log_b{N}$
২. $log_b{(MN)} = log_b{M} + log_b{N}$
৩. $log_b{(M^P)} = P \cdot log_b{M}$

প্রথমে, ভাগের নিয়মটি প্রয়োগ করি:
$log_a{(\frac{x^3y^2}{z})} = log_a{(x^3y^2)} - log_a{z}$

এবার গুণের নিয়মটি প্রয়োগ করি:
$log_a{(x^3y^2)} - log_a{z} = (log_a{x^3} + log_a{y^2}) - log_a{z}$

এখন পাওয়ারের নিয়মটি প্রয়োগ করি:
$(log_a{x^3} + log_a{y^2}) - log_a{z} = (3 \cdot log_a{x} + 2 \cdot log_a{y}) - log_a{z}$

এবার প্রদত্ত মানগুলো বসিয়ে দিই:
$(3 \cdot 1 + 2 \cdot 2) - 3$
$= (3 + 4) - 3$
$= 7 - 3$
$= 4$

সুতরাং, $log_a{(\frac{x^3y^2}{z})}$ এর মান হলো $4$।

২৭. $$\sqrt{169}$$ is equal to -

[ বিসিএস ৩৪তম ]

 11
 13
 15
 17
ব্যাখ্যাঃ $\sqrt{169}$ এর মান হলো ১৩
 4
 8
 5
 7
ব্যাখ্যাঃ :
প্রদত্ত রাশিটি হলো $\frac{(5^{n+2}+35×5^{n-1})}{(4×5^n)}$

প্রথমে আমরা লবকে (numerator) সরল করি:
$5^{n+2}+35×5^{n-1}$
$= 5^{n-1+3} + 35×5^{n-1}$
$= 5^{n-1}×5^3 + 35×5^{n-1}$
$= 5^{n-1}×(125) + 35×5^{n-1}$
$= 5^{n-1}(125+35)$
$= 5^{n-1}(160)$

এবার আমরা হরকে (denominator) সরল করি:
$4×5^n$
$= 4×5^{n-1+1}$
$= 4×5^{n-1}×5^1$
$= 4×5×5^{n-1}$
$= 20×5^{n-1}$

এখন, লব ও হরকে একত্রিত করে পাই:
$\frac{160×5^{n-1}}{20×5^{n-1}}$

উভয় পক্ষ থেকে $5^{n-1}$ কেটে দিলে পাই:
$\frac{160}{20} = ৮$

সুতরাং, নির্ণেয় মান হলো ৮।

২৯. $$(\sqrt[3]{3}×\sqrt[3]{4})^6$$ = কত?

[ বিসিএস ৩৩তম ]

 12
 48
 36
 144
ব্যাখ্যাঃ $\implies (\sqrt[3]{3} \times \sqrt[3]{4})^৬$

$\implies (\sqrt[৩]{৩ \times ৪})^৬$

$\implies (\sqrt[৩]{১২})^৬$

$\implies (১২^{\frac{১}{৩}})^৬$

$\implies ১২^{(\frac{১}{৩} \times ৬)}$

$\implies ১২^২$

$\implies ১২ \times ১২ = ১৪৪$

অতএব, প্রদত্ত রাশিটির মান হলো ১৪৪

৩০. যদি $$(\frac{a}{b})^{x-3}=(\frac{b}{a})^{x-5}$$ হয় তবে $$x$$ এর মান কত?

[ বিসিএস ৩৩তম | 17th ntrca (স্কুল সমপর্যায়-২) (30-12-2022) ]

 8
 3
 5
 4
ব্যাখ্যাঃ
$(\frac{a}{b})^{x-3}=(\frac{b}{a})^{x-5}$

আমরা জানি যে, $(\frac{b}{a})^{-1} = \frac{a}{b}$
সুতরাং, $(\frac{b}{a})^{x-5}$ কে লেখা যায় $(\frac{a}{b})^{-(x-5)}$

$\implies (\frac{a}{b})^{x-3} = (\frac{a}{b})^{-(x-5)}$

উভয় পাশে ভিত্তি $(\frac{a}{b})$ সমান হওয়ায়, আমরা সূচকগুলোকে সমান লিখতে পারি:
$x-3 = -(x-5)$
$x-3 = -x+5$
$x+x = 5+3$
$2x = 8$
$x = \frac{8}{2}$
$x=4$

৩১. $$\sqrt[3]{\sqrt[3]{a^3}} = $$ কত?

[ বিসিএস ৩৩তম ]

 a
 1
 $$a^{\frac{1}{3}}$$
 $$a^3$$
ব্যাখ্যাঃ
প্রথমে ভিতরের বর্গমূলটি সমাধান করা যাক:
$\sqrt[3]{a^3} = a^{\frac{৩}{৩}} = a^১ = a$

এবার এই ফলাফলটিকে বাইরের বর্গমূলের মধ্যে বসানো যাক:
$\sqrt[3]{a}$

যেহেতু $\sqrt[3]{a}$ এর মান কোনো পূর্ণসংখ্যা নয়, তাই এটিকেই আমরা এভাবে লিখতে পারি:
$a^{\frac{১}{৩}}$
 $$16^x$$
 $$4^{4x}$$
 $$2^{2x+2}$$
 $$2^{8x}$$
ব্যাখ্যাঃ
$৪^x+৪^x+৪^x+৪^x$

$= ৪ \times ৪^x$
$= ৪^1 \times ৪^x$
$= ৪^{1+x}$

৩৩. $$log_{2}{\frac{1}{32}}$$ এর মান –

[ বিসিএস ৩১তম ]

 $$\frac{1}{25}$$
 $$-5$$
 $$\frac{1}{5}$$
 $$\frac{-1}{5}$$
ব্যাখ্যাঃ
$log_{2}{\frac{1}{32}}$
$= log_{2}{\frac{1}{2^5}}$
$= log_{2}{2^{-5}}$
$= -5log_{2}{2}$
$= -5 \times 1$$
$= -5$
 30
 60
 225
 15
ব্যাখ্যাঃ $$(\sqrt{3} \cdot \sqrt{5})^4 = (\sqrt{15})^4$$ এখন, \( (\sqrt{15})^4 \) কে লিখতে পারি: $$ (\sqrt{15})^4 = (\sqrt{15})^2 \cdot (\sqrt{15})^2$$ এখন, \( (\sqrt{15})^2 = 15 \) হয়, তাই: $$ (\sqrt{15})^2 \cdot (\sqrt{15})^2 = 15 \cdot 15 = 225 $$ সুতরাং, $$(\sqrt{3} \cdot \sqrt{5})^4 = 225$$

৩৫. $$\frac{\sqrt{2}}{\sqrt{6}+2}$$ সমান-

[ বিসিএস ২৬তম ]

 $$\sqrt{3}+\sqrt{2}$$
 $$8-\sqrt{2}$$
 $$\sqrt{3}-\sqrt{2}$$
 $$\sqrt{3}+2$$
ব্যাখ্যাঃ আমরা প্রদত্ত ভগ্নাংশটি সরলীকরণ করব: \[ \frac{\sqrt{2}}{\sqrt{6} + 2} \] ### ধাপ ১: হর থেকে ঐকিক পদ সরানো (যূক্পদ মুক্ত করা) হরকে যূক্পদ মুক্ত করতে আমরা সঙ্গতি ভগ্নাংশ দ্বারা গুণ করব। সঙ্গতি ভগ্নাংশ হবে \( \sqrt{6} - 2 \), তাই আমরা হর ও লব দুটোতেই এটি দ্বারা গুণ করবো: \[ \frac{\sqrt{2}}{\sqrt{6} + 2} \times \frac{\sqrt{6} - 2}{\sqrt{6} - 2} \] ### ধাপ ২: হরের গুণফল নির্ণয় \[ (\sqrt{6} + 2)(\sqrt{6} - 2) \] এটি \( a^2 - b^2 \) সূত্র প্রয়োগ করে পাই: \[ 6 - 4 = 2 \] অর্থাৎ, হর = 2। ### ধাপ ৩: লবের গুণফল নির্ণয় \[ \sqrt{2} (\sqrt{6} - 2) \] \[ = \sqrt{12} - 2\sqrt{2} \] \[ = 2\sqrt{3} - 2\sqrt{2} \] ### ধাপ ৪: ভগ্নাংশ সরলীকরণ \[ \frac{2\sqrt{3} - 2\sqrt{2}}{2} \] \[ = \sqrt{3} - \sqrt{2} \] --- ### উত্তর: \[ \sqrt{3} - \sqrt{2} \quad \text{✅} \]
 $$\frac{১}{২৫}$$
 $$\frac{৫}{২০}$$
 $$\frac{৯}{২৫}$$
 $$\frac{৩}{২০}$$
ব্যাখ্যাঃ ধরি, \[ \left(\frac{১২৫}{২৭}\right)^{-\frac{২}{৩}} \] প্রথমে ভগ্নাংশটির হারের মান বের করি: \[ \frac{১২৫}{২৭} = \left(\frac{৫^৩}{৩^৩}\right) = \left(\frac{৫}{৩}\right)^৩ \] এখন, এই মানটির উপর শক্তি প্রয়োগ করি: \[ \left(\frac{৫}{৩}\right)^৩ \] এই মানটির উপর \(-\frac{২}{৩}\) প্রয়োগ করতে হবে: \[ \left(\left(\frac{৫}{৩}\right)^৩\right)^{-\frac{২}{৩}} \] এখন আমরা শক্তির নিয়ম প্রয়োগ করি: \[ \left(\left(\frac{৫}{৩}\right)^৩\right)^{-\frac{২}{৩}} = \left(\frac{৫}{৩}\right)^{৩ \cdot -\frac{২}{৩}} = \left(\frac{৫}{৩}\right)^{-২} \] এখন শক্তি সরল করি: \[ \left(\frac{৫}{৩}\right)^{-২} = \left(\frac{৩}{৫}\right)^২ \] শেষে, \[ \left(\frac{৩}{৫}\right)^২ = \frac{৯}{২৫} \] অতএব, \((\frac{১২৫}{২৭})^{-\frac{২}{৩}}\) এর সরল প্রকাশ হলো \(\frac{৯}{২৫}\)।

৩৭. \(a^m.a^n = a^{m+n}\) কখন হবে?

[ বিসিএস ১৪তম ]

 m ধনাত্মক হলে
 n ধনাত্মক হলে
 m ও n ধনাত্মক হলে
 m ধনাত্মক ও n ঋণাত্মক হলে
ব্যাখ্যাঃ \(a^m \cdot a^n = a^{m+n}\) সমীকরণটি প্রযোজ্য হবে যখন \(a\) একই সংখ্যা এবং \(m\) ও \(n\) দুইটি ধনাত্মক পূর্ণসংখ্যা (ধরা যাক \(a \neq 0\) )।

অর্থাৎ, \(a\) এর একই ভিত্তি এবং তাদের ঘাত যোগফল সমান হবে, তখনই এই সমীকরণটি সত্যি হবে।
 ৩
 ৪
 ৫
 ৬
ব্যাখ্যাঃ \(32 = 2^5\) এখন, লগারিদম সূত্র অনুযায়ী: \[ \log_2{32} = \log_2{2^5} = 5 \] অতএব, \(32\) এর \(2\) ভিত্তিক লগারিদম হল \(5\)।
 5
 \(-5\)
 \(\frac{১}{৫}\)
 \(-\frac{১}{৫}\)
ব্যাখ্যাঃ প্রদত্ত রাশিটি হলো: \[ [২ - ৩ (২-৩)^{-১}]^{-১} \] এটি সমাধান করতে আমরা ধাপে ধাপে এগোই।

ধাপ ১: ভিতরের বন্ধনী সমাধান
প্রথমে ভিতরের বন্ধনী \( (২-৩)^{-১} \) সমাধান করি: \[ ২ - ৩ = -১ \] \[ (২-৩)^{-১} = (-১)^{-১} = -১ \] ধাপ ২: মূল রাশিতে প্রতিস্থাপন
এখন মূল রাশিতে প্রতিস্থাপন করি: \[ [২ - ৩ \times (-১)]^{-১} \] ধাপ ৩: গুণন সমাধান \[ ৩ \times (-১) = -৩ \] ধাপ ৪: যোগ সমাধান \[ ২ - (-৩) = ২ + ৩ = ৫ \] ধাপ ৫: শেষ ধাপ
এখন রাশিটি হলো: \[ [৫]^{-১} = \frac{১}{৫} \] ফলাফল \[ [২ - ৩ (২-৩)^{-১}]^{-১} = \frac{১}{৫} \] অতএব, প্রদত্ত রাশিটির মান \(\frac{১}{৫}\)
 \(\sqrt{2}\)
 \(\frac{1}{2(\sqrt{5}-\sqrt{3})}\)
 \(\frac{1}{\sqrt{5}} + \frac{1}{\sqrt{3}}\)
 \(\frac{2}{\sqrt{3}+\sqrt{5}}\)
ব্যাখ্যাঃ ধাপে ধাপে আমরা দেখতে পাই: \[ \sqrt{5} - \sqrt{3} = \frac{(\sqrt{5} - \sqrt{3})(\sqrt{5} + \sqrt{3})}{\sqrt{5} + \sqrt{3}} \] এখন উপরের অংশ সরলীকরণ করা হলে: \[ (\sqrt{5})^2 - (\sqrt{3})^2 = 5 - 3 = 2 \] তাহলে: \[ \sqrt{5} - \sqrt{3} = \frac{2}{\sqrt{5} + \sqrt{3}} \]
 \(9\frac{2}{3}\)
 \(11\frac{1}{3}\)
 \(12\frac{2}{5}\)
 \(13\frac{2}{3}\)
ব্যাখ্যাঃ প্রদত্ত সমীকরণটি হলো: \[ (64)^{\frac{2}{3}} + (625)^{\frac{1}{2}} = 3K \] আমরা প্রথমে \((64)^{\frac{2}{3}}\) এবং \((625)^{\frac{1}{2}}\) এর মান নির্ণয় করব।

ধাপ 1: \((64)^{\frac{2}{3}}\) এর মান নির্ণয় \[ (64)^{\frac{2}{3}} = \left(64^{\frac{1}{3}}\right)^2 \] \[ 64^{\frac{1}{3}} = 4 \quad (\text{কারণ } 4^3 = 64) \] \[ (64)^{\frac{2}{3}} = 4^2 = 16 \] ধাপ 2: \((625)^{\frac{1}{2}}\) এর মান নির্ণয় \[ (625)^{\frac{1}{2}} = \sqrt{625} = 25 \] ধাপ 3: সমীকরণে মান বসানো \[ (64)^{\frac{2}{3}} + (625)^{\frac{1}{2}} = 16 + 25 = 41 \] \[ 3K = 41 \] \[ K = \frac{41}{3} \] সুতরাং, \(K\) এর মান হলো: \[ \boxed{13\frac{2}{3}} \]

৪২. \(log_a(\frac{m}{n})=\) কত?

[ বিসিএস ৩১তম ]

 \(\mathrm {log_a⁡ m-log_a⁡n}\)
 \(\mathrm {log_a⁡ m+log_a⁡n}\)
 \(\mathrm {log_a⁡ m×log_a⁡n}\)
 কোনোটিই নয়
ব্যাখ্যাঃ আমরা লগারিদমের গুণনীয়কের সূত্র প্রয়োগ করে \(log_a(\frac{m}{n})\)-এর মান বের করতে পারি। সূত্রটি হলো: \[ log_a\left(\frac{m}{n}\right) = log_a(m) - log_a(n) \] তাহলে, \[ log_a(\frac{m}{n}) = log_a(m) - log_a(n) \] এটি হলো চূড়ান্ত উত্তর।
 \(\frac{7}{3}\)
 3
 \(\frac{8}{3}\)
 2
ব্যাখ্যাঃ \[ 36.2^{3x-8} = 3^2 \] \[\Rightarrow 2^{3x-8} = \frac{9}{36} \] \[\Rightarrow \frac{2^{3x}}{2^8} = \frac{1}{4} \] \[\Rightarrow 2^{3x} = \frac{2^8}{4} \] \[\Rightarrow 2^{3x} = \frac{2^8}{2^2} \] \[\Rightarrow 2^{3x} = 2^{8-2} \] \[\Rightarrow 2^{3x} = 2^6 \] \[\Rightarrow 3x = 6\] \[\therefore x = 2 \]
 \(4xy\)
 \(2xy\)
 \(6xy\)
 \(8xy\)
ব্যাখ্যাঃ \[x^2 - 8x - 8y + 16 + y^2\] \[= x^2 + (-4)^2 + y^2 + 2 \cdot x \cdot (-4) + 2 \cdot (-4) \cdot y + 2xy - 2xy\] \[= (x - 4 + y)^2 - 2xy\] সুতরাং, পূর্ণ বর্গে রূপান্তর করতে \(2xy\) যোগ করতে হবে।

৪৫. \(log_2~8=\) কত?

[ বিসিএস ৩২তম ]

 4
 3
 2
 1
ব্যাখ্যাঃ আমরা জানি যে লগারিদমের মূল সূত্র অনুসারে: \[ log_a(b) = c \implies a^c = b \] এখানে, \(log_2(8) = c\) হলে: \[ 2^c = 8 \] আমরা জানি \(8 = 2^3\), সুতরাং: \[ 2^c = 2^3 \] এখন ভিত্তি একই হলে সহগও সমান হয়: \[ c = 3 \] \(log_2(8) = 3\)।